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Betaine, a natural compound found in beets, wheat germ, shellfish, and mammalian
tissues, plays a crucial role in preventing and treating various chronic diseases.
As the global population ages, chronic diseases are posing the primary threat to
the health of the elderly, significantly increasing the medical pressure on families
and society. Chronic diseases associated with aging involve complex molecular
mechanisms and, therefore, developing multipronged interventions is crucial for
their prevention and treatment. Although exercise is a primary intervention for
preventing and treating chronic diseases, many elderly individuals have motor
disabilities. Therefore, researchers are exploring natural products that mimic the
therapeutic effects of exercise in individuals who are unable to exercise. Betaine
has exhibited significant preventive and therapeutic effects in studies on chronic
diseases and is known as an exercise mimetic. A deeper understanding of betaine
may help elucidate crucial molecular mechanisms underlying its effects and offer
theoretical insights for developing exercise-mimicking foods, supplements, and
drugs, which are expected to benefit the human health.

KEYWORDS
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1 Introduction

In 2021, noncommunicable diseases resulted in 1.73 billion disability-adjusted life years
(1). Chronic diseases are becoming increasingly common in younger populations. According
to the 2025 World Health Statistics, 18 million people aged <70 years died of noncommunicable
diseases globally in 2021, accounting for more than half of all deaths in this age group (2).
Among Chinese people aged >70 years, the prevalence of multiple chronic diseases is 40% (3).
Therefore, prevention and treatment of chronic diseases have become major global public
health issues. Although clinicians and researchers have been successful in mitigating the
progression of chronic diseases to a certain extent through surgery and drugs, the interventions
are associated with high medical costs, reduced quality of life, and increased risk of
complications (4). Early prevention and treatment may reduce disease incidence, with exercise
playing a crucial role (5). The World Health Organization (6) and American College of Sports
Medicine (7) recommend that older adults engage in physical activity at least 2-3 times per
week to maintain cardiorespiratory, musculoskeletal, and neuromotor fitness. However,
effective exercise is not feasible for individuals who are elderly, bedridden, or suffering from
motor function loss. Therefore, researchers in sports medicine are exploring drugs, natural
products, and synthetic small molecules that can replace exercise. Compared with drugs,
small-molecule agonists, and/or inhibitors, natural ingredients may be safer and more suitable
for long-term use and serve as sources of motion mimetics. Betaine, a trimethylglycine
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abundant in plants, is a primary osmoprotectant and methyl donor
that plays a significant role in preventing and treating chronic diseases.
It has also been identified as an exercise mimetic. This article
summarizes the role of betaine in the prevention and treatment of
chronic diseases, providing molecular insights and a theoretical basis
for developing functional foods, supplements, and drugs.

2 Betaine

Betaine (C;H,;NO,) is a trimethyl derivative of glycine, with a
molecular weight of 117.146 g/mol. This stable, nontoxic natural
substance, discovered as a byproduct of beet processing, is widely
present in microorganisms, plants, and animals. Dietary sources
include wheat bran (1,339 mg/100 g), spinach (600-645 mg/100 g),
beets (114-297 mg/100 g), shrimp (219 mg/100 g), and whole wheat
bread (20 mg/100 g). It is also synthesized by the kidneys and liver (8,
9) (Figure 1A). The median daily betaine intake for the general
population is 224.77 mg (10), typically ranging between 100 and
300 mg (11). It is rapidly absorbed through the duodenum, remains
unbound to proteins, with its plasma content being 20-70 pmol/L (9,
12) (Figure 1B). Because betaine can pass freely through the kidneys in
its unmetabolized form, it is primarily converted into methionine,
S-adenosylmethionine (SAM), and dimethylglycine in the body, with
only small amounts excreted through urine and sweat. A single dose of
betaine (50 mg/kg) in healthy young men reached a peak concentration
of 1 mmol/L within 1 h. The elimination half-life of a single dose is
approximately 14 h, and <5% of the dose remains after 72 h (13)
(Figure 1C). Biologically, betaine functions primarily as a methyl donor
in transmethylation and as an osmoprotectant. It participates in various
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biological processes by gradually removing methyl groups and forming
sarcosine and glycine through decomposition and metabolism. As an
osmoprotectant, betaine primarily protects cells from osmotic/ionic
stress by regulating the concentration and volume of intracellular fluid.
Additionally, it exhibits positive regulatory effects in various chronic
disease models (14, 15). Betaine regulates cell signals, playing a
significant role in disease prevention and treatment.

3 Betaine metabolism

Betaine transfers a methyl group to homocysteine to form
methionine via a reaction catalyzed by betaine-homocysteine
methyltransferase (BHMT). After losing its methyl group, betaine is
converted into dimethylglycine, which undergoes oxidation in the
mitochondria. Dimethylglycine dehydrogenase (DMGDH) removes
a methyl group to produce sarcosine that enters the electron transport
chain, generating reduced nicotinamide adenine dinucleotide/reduced
(NADH/FADH?2).
dehydrogenase (SDH) removes the last methyl group of sarcosine to

flavin  adenine dinucleotides Sarcosine
form glycine, generating NADH/FADH2. Methionine is converted to
S-adenosylmethionine (SAM) via the transfer of adenosyl group from
adenosine triphosphate (ATP) by methionine adenosyltransferase
(MAT). SAM is the primary methyl donor for methylation reactions
in the body, providing methyl groups for the modification of DNA,
RNA,

neurotransmitters. After losing its methyl group, SAM is converted to

proteins, phospholipids  (phosphatidylcholine), and
S-adenosyl-l-homocysteine (SAH)—a potent methyltransferase
inhibitor. Increased levels of SAH inhibit methylation reactions,

making its rapid metabolism crucial. SAH is hydrolyzed by

B

Rapid absorption

Endogenous Synthesis

0o
/
HSC/\/T\)]\O-

FIGURE 1

urine and sweat (C).

@ NHs
OJ\NHQL’ @ oH

Sarcosine

Plasma
Concentration:
20-70 pmol/L
rotein-Unbound

Urine

| t —>

Peak Elimination <5%
Concentration:  Half-life:  Remaining

1mmol/L(1h)  ~14h (72h)

Metabolism
Functions
Meh, Methyl Donor

(Transmethylation)

=€

Osmotic Protectant
(Cell volume Regulation)

Glycine

Schematic depicting the sources, synthesis, and kinetics of betaine. Betaine entering the circulatory system is derived from the consumed food and via
synthesis in the liver (A); it is converted by the liver into methyl donors, such as S-sarcosine and glycine (B), as well as osmoprotectants, which
participate in transmethylation and cell volume regulation, respectively. Some amount of betaine and its metabolites is excreted from the body through
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S-adenosylhomocysteine hydrolase, resulting in the formation of
homocysteine and adenosine. Homocysteine can reenter the BHMT
pathway and get methylated by betaine to methionine, thereby
completing the cycle. If the body is deficient in betaine or folic acid
and requires cysteine, homocysteine cannot be remethylated to
methionine. Instead, it combines with serine to generate cystathionine
through cystathionine p-synthase (CBS), which is then cleaved by
cystathionine y-lyase to generate cysteine and a-ketobutyrate. Cysteine
contributes to glutathione and protein synthesis and can be oxidized
and decomposed into sulfate for excretion or is converted to taurine
(Figure 2). Therefore, the contribution of betaine to the methionine
cycle is crucial for maintaining normal cell function, gene expression
regulation, antioxidant defense, and numerous biosynthetic pathways.

4 Molecular mechanisms underlying
the exercise-mimicking effects of
betaine

Betaine is involved in a variety of molecular mechanisms in the
body. It exhibits similar effects as exercise in delaying aging and
promoting health and is, therefore, considered an exercise mimic (16).
Exercise is widely advocated as an intervention to promote health and
prevent disease; it mainly activates AMPK through energy consumption
and is involved in the regulation of multiple network mechanisms (17).
Exercise can enhance the antioxidant, anti-inflammatory, and
antiapoptotic effects, regulate immunity, activate autophagy, improve
the mitochondrial quality, tissue integrity, circadian rhythm, genetics,
endocrine system, and gut microbiota, and prevents and delays chronic
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diseases, such as cognitive decline and skeletal muscle atrophy (18).
Betaine can also activate AMPK, reduce oxidative stress, endoplasmic
reticulum stress, inflammation, and apoptosis, delay aging and cancer
development, and plays a positive regulatory role in maintaining tissue
integrity and mitigating chronic diseases (19, 20). Notably, the role of
betaine in mimicking exercise is mainly reflected in activating AMPK
(20), improving mitochondrial quality (21), regulating autophagy (22),
reducing oxidative stress (23), inhibiting inflammation (24), and
genetic modification (25). These are also important mechanisms for
maintaining health and preventing and treating diseases. These studies
have provided insights into the effects of betaine at the molecular level
and form a theoretical basis for developing it as a functional food,
nutritional supplement, and drug, benefitting human health.

5 Betaine and chronic diseases

Research on the use of betaine in the prevention and treatment of
various chronic diseases is ongoing. Below, we provide a review of the
literature on the effects of betaine in diseases, such as obesity, diabetes,
liver disease, cardiovascular disease, kidney disease, and Alzheimer’s
disease, and discuss the underlying mechanisms.

5.1 Betaine for the prevention and
treatment of obesity

With industrialization, physical activities performed by humans
have considerably decreased, resulting in energy surplus in the body,
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Metabolism of betaine. In a reaction catalyzed by betaine-homocysteine methyltransferase (BHMT), betaine loses a methyl group to form
dimethylglycine, which is subsequently demethylated by dimethylglycine dehydrogenase (DMGDH) to form sarcosine that enters the electron
transport chain. Sarcosine dehydrogenase (SDH) removes the last methyl group of sarcosine to form glycine. Homocysteine obtains the methyl group
transferred by BHMT-catalyzed betaine to form methionine that is converted into S-adenosylmethionine (SAM) by methionine adenosyltransferase
(MAT) via transfer of adenosyl group from adenosine triphosphate (ATP). SAM provides methyl groups for the methylation of DNA, RNA, proteins,
phospholipids (phosphatidylcholine), and neurotransmitters.
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which leads to obesity—a global public health concern worldwide
associated with various chronic diseases. Betaine has been widely
studied for the prevention and treatment of obesity. Epidemiologically,
people with a higher intake of betaine in their daily diet generally have
a lower body weight (10, 26), which may be a consequence of reduced
body fat (27). In middle-aged and elderly Chinese men, serum betaine
levels were positively associated with lean body mass in the whole
body, trunk, and limbs (28). In women, betaine supplementation did
not enhance exercise performance but significantly reduced the
percentage and mass of body fat (29). These results indicate that the
effect of betaine in preventing obesity may not be affected by factors,
such as age, total calorie intake, physical activity level, and trunk fat,
consistent with the results of relevant studies on Newfoundland
residents (30). However, supplementation with exogenous betaine had
no significant effect on body weight, composition, or resting energy
expenditure (31), indicating that a larger sample size and detailed
studies are required for confirmation. However, betaine resistance
may exist in obesity and prediabetes, possibly associated with low
DMGDH levels that limits betaine metabolism (32). Therefore, the
effects of betaine on weight management may require larger sample
sizes and detailed studies.

The beneficial effects of betaine on obesity and related metabolic
disorders have been confirmed in numerous studies. These effects
involve various complementary pathways, such as energy metabolism,
inflammation regulation, and gut microecological remodeling. In vivo
experiments have demonstrated that betaine activates adenosine
monophosphate-activated protein kinase subunit alpha 1 (AMPKal),
upregulating fatty acid oxidation, citric acid cycle, and mitochondrial
oxidative phosphorylation, thereby accelerating lipid consumption
and limiting weight gain (33, 34) (Figure 3A). In a high-fat, high-sugar
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diet-induced obese mouse model, betaine intervention significantly
enhanced glucose utilization efficiency in the skeletal muscle and liver,
lowered fasting blood glucose levels, and alleviated systemic
inflammation (35) (Figure 3B). If combined with exercise training, the
blood sugar-lowering effect is more significant (36). Betaine facilitates
mitochondrial regeneration in white adipose tissue, induces browning
of white adipocytes, and inhibits the expression of adipogenic genes.
Additionally, it reduces the mRNA levels of proinflammatory
cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and
interleukin-12 (IL-12), both in muscle tissue in vivo and in adipose
tissue cells in vitro, thereby alleviating high-fat diet-induced obesity
and insulin resistance (37, 38), consistent with the results of facilitating
the reduction of skeletal muscle lipid deposition and enhancing
adipose tissue lipolysis (39) (Figure 3C). In vitro studies have
confirmed that betaine can inhibit the expression of hypoxia-induced
IL-6 and tumor necrosis factor-alpha (TNF-a) mRNAs in human
adipocytes, indicating that it directly acts on adipose tissue to reduce
obesity-related low-grade inflammation (38). Moreover, it exhibited
conservative metabolic-protective effects in lower vertebrate models.
After betaine treatment of high-fat-induced obese black sea bream
juveniles, the silent information regulator transcript 1/sterol
regulatory element-binding protein 1/peroxisome proliferator-
activated receptor alpha (SIRT1/SREBP-1/PPARa) axis was activated,
anti-inflammatory cytokines transforming growth factor-beta 1
(TGF-P1) and IL-6 were upregulated, whereas proinflammatory
signals, such as nuclear factor kappa-light-chain-enhancer of activated
b cells (NF-kB), TNF-a, and interleukin-1 beta (IL-1P) were
downregulated, confirming its cross-species anti-inflammatory
activity (40). However, the conclusions of these population-based
studies are inconsistent. Certain randomized controlled trials have
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Molecular mechanisms underlying the effects of betaine in preventing and enhancing obesity. Betaine increases energy expenditure by activating the
adenosine monophosphate-activated protein kinase—mitochondrial axis, thereby enhancing mitochondrial oxidative phosphorylation (A); improving
hepatic and skeletal muscle glucose utilization, reducing lipomatosis, and improving insulin sensitivity and fasting blood glucose (B); promoting white
adipose tissue consumption and mitochondrial regeneration, and inhibiting adipogenesis genes, fat deposition, and inflammation (C); increasing DNA
methylation through the gut microbiota-short-chain fatty acid-epigenetic cascade, thereby inhibiting lipid synthesis and enhancing insulin sensitivity
(D); and regulating metabolic homeostasis and gut microbiota in the offspring to prevent early-onset obesity and improve metabolic health (E).
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demonstrated that betaine reduces the levels of circulating
inflammatory markers; however, the differences were not statistically
significant. This may be associated with the small sample size, short
intervention period, and numerous confounding factors. A large
sample size and long-term intervention are required for validation
(41). Additionally, betaine exerts antiobesity effects by reshaping the
gut microbiota and its metabolites. In a high-fat diet mouse model,
betaine facilitated the proliferation of beneficial bacteria, such as
Akkermansia muciniphila, Lactobacillus, and Bifidobacterium, and
increased the production of acetate and butyrate. Short-chain fatty
acids (SCFAs) inhibit lipid synthesis and enhance insulin sensitivity
by increasing the DNA methylation of the miR-378a promoter (42, 43)
(Figure 3D). A dose-effect study further confirmed that betaine
intervention at a dose of 120 mg/kg body weight for 4 weeks was
adequate to significantly enhance glycemic and lipid profiles and
reduce body weight in mice fed a high-fat diet (44).

The role of betaine is also reflected in maternal and child health.
Maternal betaine intake affects obesity risk in the offspring. In
experiments on obese rats, betaine supplementation during pregnancy
helped the offspring restore normal growth and developmental
rhythms while reducing obesity (45). Whether the mother consumes
betaine through diet during pregnancy or adds it to breast milk, it can
regulate the metabolic state and gut microbiota composition of the
offspring, thereby preventing early obesity and facilitating long-term
metabolic health (46, 47) (Figure 3E). Additionally, human studies
have confirmed that betaine content in the maternal body is associated
with the birth weight and abdominal fat mass in babies. In particular,
higher maternal betaine levels are associated with healthier birth
weight and lower abdominal fat mass in infants (48).

Betaine synergistically enhances obesity and its metabolic
complications through various targets via the AMPK-mitochondrial
axis, SIRT1/SREBP-1/PPARa signaling, inhibition of inflammation,
and the microbiota-SCFA-epigenetic cascade, providing a mechanistic
basis for its clinical translation.

5.2 Betaine for the prevention and
treatment of diabetes

Diabetes is a common metabolic disease, the onset of which is
primarily caused by the combined effects of genetic susceptibility and
acquired environmental factors (long-term high-sugar and high-fat
diets, sedentary lifestyles, and obesity). The core pathological
mechanism is insulin resistance in peripheral tissues and organs
(reduced insulin sensitivity of muscles, fat, and liver) and reduced
pancreatic p-cell function (insufficient or delayed insulin secretion),
resulting in increased blood levels (49). No obvious symptoms might
be present in the early stages of the disease; however, as the disease
progresses, typical manifestations, such as polydipsia, polyphagia,
polyuria, and weight loss occur. If blood sugar is not well controlled
for along time, it gradually damage tissues and organs throughout the
body and may induce chronic complications, such as cardiovascular
disease, kidney disease, neuropathy, and retinopathy (50).

5.2.1 Type 2 diabetes mellitus

The baseline betaine level in patients with type 2 diabetes mellitus
(T2DM) is lower than that in healthy individuals (51); however,
hyperglycemia is not the cause of increased betaine excretion (52).

Frontiers in Nutrition

10.3389/fnut.2025.1762908

Nevertheless, it is significantly correlated with glycated hemoglobin
levels (53). This is consistent with the results of another study that
used liquid chromatography-tandem mass spectrometry to measure
betaine in urine and plasma and a multivariate regression analysis to
show that glycated hemoglobin was the strongest determinant of
betaine excretion in patients with diabetes (54), although different test
results have also been reported (55). Betaine is a marker of diabetes
risk in high-risk individuals and has been reported to perform a direct
role in regulating metabolic health (56). Lower betaine intake is
associated with lower insulin levels, homeostatic model assessment of
insulin resistance (HOMA-IR) (57), and an increased risk of other
T2DM (58). For example, plasma betaine content in patients with
T2DM is negatively associated with the occurrence of microvascular
complications (59). In a population-based study in Newfoundland,
high serum betaine levels were associated with low lipid levels and
insulin resistance (60) (Figure 4A). In adults, higher betaine levels
were negatively associated with lower diabetes-related markers, serum
insulin concentrations, and HOMA-IR (57). However, no significant
association between betaine use and diabetes was observed in some
other studies. A follow-up study involving 13,440 participants
demonstrated that dietary betaine intake was not associated with
T2DM (61). A semi-quantitative food frequency questionnaire survey
involving 6,022 participants aged >18 years in Tehran did not find any
association between dietary betaine intake and T2DM (62). These two
studies involved a large number of participants. Because of the
numerous factors affecting human health, semi-quantitative food
frequency questionnaires may not accurately reflect this phenomenon.
Therefore, more rigorous clinical and basic studies are required to
verify the relationship between betaine and T2DM.

5.2.2 Gestational diabetes

Gestational diabetes is a glucose metabolism disorder that often
occurs during pregnancy. Reduced serum betaine levels are an
independent risk factor for gestational diabetes that may be associated
with blood sugar regulation and short-term fluctuations (63). Higher
dietary betaine intake among pregnant women in China was reported
to be inversely associated with the risk of gestational diabetes mellitus
in women without a history of childbearing (64). Betaine
administration to mice after feeding a high-fat diet for 4 weeks before
and during pregnancy to induce gestational diabetes alleviated
morphological alterations in the placental junction area and increased
the glycogen cell area in pregnant mice. Additionally, in vitro
experiments have demonstrated that betaine can alter certain
determinants of placental transport during the hyperglycemic
response (65). In a streptozotocin (STZ)-induced gestational diabetes
model, betaine significantly increased insulin levels, restored normal
plasma total homocysteine concentrations, and enhanced insulin
resistance and blood lipid status (66). Additionally, betaine could
reduce increased DNA damage levels in the placental and embryonic
tissues of rats at 14-20 days of gestation, with the best effect achieved
when betaine was administered orally at a dose of 100 mg/kg body
weight (67) (Figure 4B).

5.2.3 Diabetic complications

Basic research on the effects of betaine on diabetes is increasing,
with some studies demonstrating positive results. Betaine can inhibit
the activation of protein kinase B (Akt) in the retina of STZ-induced
diabetic rats, thereby attenuating the increase in vascular endothelial
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glucose, and insulin resistance. (B) Betaine reduces the risk of gestational diabetes, mitigates DNA damage in placental and embryonic tissues, and
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inducible factor 1-alpha and alleviates retinopathy. (D) In the testicular tissue, betaine reduces superoxide dismutase (SOD), malondialdehyde (MDA),
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reactive oxygen species (ROS) and malondialdehyde (MDA) levels. (G) Benazepril and its analogs appear to exacerbate betaine loss, leading to elevated
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growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1or)
expression and inhibiting neovascularization to delay diabetic
In the
STZ-induced diabetic mouse model, oral administration of betaine

retinopathy-associated complications (59) (Figure 4C).

reduced the levels of reactive oxygen species (ROS) and
malondialdehyde (MDA) in the testicular tissue and increased the
activities of superoxide dismutase (SOD), catalase (CAT), and
glutathione (GSH), thereby inhibiting the p38 mitogen-activated
protein kinase (p38 MAPK) signaling pathway and protecting against
blood-testis barrier dysfunction (68) (Figure 4D). Similarly, in
STZ-induced diabetic rats, betaine inhibited oxidative stress and
inflammation while activating the phosphatidylinositol 3-kinase
(PI3K)/AKkt signaling pathway to enhance cognitive impairment (69)
(Figure 4E). In a diabetic db/db mouse model, betaine alleviated
endoplasmic reticulum and oxidative stress to enhance insulin
resistance, hyperlipidemia, and tau protein hyperphosphorylation (70).
In STZ-induced male diabetic rats, betaine reduced the increase in the
levels of glycosylated hemoglobin in in blood, serum glucose, and
lipids, and the pro-oxidative state in the liver and kidney (71)
(Figure 4F). Betaine exerts a preventive effect, even in cases of diabetes
caused by arsenic poisoning-induced impaired glucose tolerance (72).
However, the use of certain drugs may result in the abnormal excretion
of betaine from the body. Benazepril esters appear to aggravate betaine
loss, resulting in increased plasma homocysteine levels (Figure 4G).
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Therefore, betaine supplementation should be considered when
treating patients with fibric acid drugs (73).

Studies in human subjects and basic experiments show that betaine
may have significant potential in the prevention, prediction, diagnosis,
and treatment of diabetes and diabetic complications (Figure 4H).
Although certain results were inconsistent, more authoritative
experiments are required for verification of these findings.

5.3 Betaine for the prevention and
treatment of liver disease

As a highly complex chemical factory, the liver plays a crucial role
in metabolism and processing of proteins, fats, sugars, vitamins, and
hormones. With modern lifestyle, liver disease has become common
worldwide. Metabolic fatty liver disease affects 30% of the global
population (74); however, no treatment is available for alcoholic liver
disease (75). The effects of betaine on the liver have been assessed for
decades, and positive effects via various molecular mechanisms have
been reported.

5.3.1 Metabolic fatty liver
Metabolic fatty liver disease often coexists with metabolic
disorders, such as obesity and metabolic syndrome, and can result in
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reduced betaine levels in the body (76). Betaine primarily regulates
hepatic lipid metabolism by inhibiting lipogenesis and facilitating fatty
acid oxidation. In the classic db/db mouse model of metabolic fatty
liver, oral administration of betaine can inhibit the interaction
between forkhead box protein O6 and peroxisome proliferator-
activated receptor gamma (PPARYy), inhibit the expression of primary
lipogenic genes, such as fatty acid synthase (FAS) and acetyl-CoA
carboxylase, and reduce hepatic lipid accumulation (77, 78).
Simultaneously, betaine can significantly increase the expression of
genes (carnitine palmitoyltransferase 1 and PPAR«) and enhance fatty
acid oxidation and lipid transport, thereby alleviating fat accumulation
in the liver (79, 80). In a vitamin B6 deficiency-induced hepatic fat
deposition model, betaine exhibited a significant inhibitory effect and
restored methionine metabolism and very low-density lipoprotein
secretion, the mechanisms of which may be associated with the
restoration of the phosphatidylethanolamine-to-phosphatidylcholine
conversion pathway (81, 82). Epigenetic regulation is another
significant regulatory mechanism. For example, in a hen model,
betaine inhibited lipogenesis and facilitated lipid decomposition by
altering DNA methylation levels or mRNA N6-methyladenosine
(m°A) modification in the promoter region of genes, such as sterol
regulatory element-binding protein 1, FAS, and stearoyl-CoA
desaturase, thereby reducing hepatic triglyceride deposition (83). The
addition of demethylase blocked the regulatory effects of betaine on
lipid metabolism and mitochondrial content, further confirming that
betaine affects RNA methylation (84). Regarding glucose metabolism
and whole-body energy balance, betaine can enhance the activity of
enzymes associated with glucose uptake, glycogen synthesis, and
decomposition in the liver and muscles, indicating its potential to
regulate glucose metabolism disorders (35). Additionally, betaine
supplementation can increase the levels of fibroblast growth factor 21
(FGF21) in the liver and circulation, enhance white fat oxidation
capacity and whole-body energy expenditure, thereby enhancing
blood glucose homeostasis and metabolic health (79, 83, 85).
Moreover, betaine exhibits antioxidant, anti-inflammatory, and gut
microbiota-regulatory functions. In a high fructose-induced rat
model, betaine reversed the increased levels of oxidative stress
indicators and inflammatory factors and alleviated liver damage (86).
In fish, betaine enhanced the structure of the gut microbiota, regulated
trimethylamine metabolism and bile acid metabolism, and indirectly
alleviated liver fat accumulation induced by a high-carbohydrate diet
(87). Notably, the protective effect of betaine is consistent across
species and has been verified in various models, such as mice, rats,
fish, and poultry, even demonstrating a preventive effect during the
embryonic or maternal supplementation stages (80, 83, 88). However,
certain studies have indicated that although it facilitates growth in a
growing pig model, it does not significantly affect fatty acid oxidation,
indicating that the mechanism may be species-specific (89). Betaine
regulates liver and systemic metabolism through various pathways
and demonstrates broad potential for preventing and alleviating
metabolic fatty liver disease. However, its specific mechanism of
action varies based on the model and species, and further research is
required to clarify this mechanism.

5.3.2 Nonalcoholic fatty liver disease

Betaine exhibits multilevel protective effects against nonalcoholic
fatty liver disease (NAFLD) through mechanisms involving metabolic
regulation, epigenetic modification, signaling pathway regulation, and
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enhancement of the gut microenvironment. Among these, epigenetic
regulation plays a crucial role. As a methyl donor, betaine increases
overall methylation levels and regulates abnormal DNA methylation
[by regulating cytosine-phosphate-guanine (CpG) methylation in the
promoter region of PPARy and hepcidin antimicrobial peptide genes
associated with lipogenesis and iron metabolism]. Additionally, it
inhibits the m°A hypomethylation state, thereby regulating gene
expression to reduce fatty acid synthesis and increase fat
decomposition, which reduces lipid accumulation in the liver and
protects it (90-93). Betaine can upregulate BHMT, enhance the
production of nicotinamide adenine dinucleotide phosphate, and
increase the expression of fat and obesity-related protein (FTO),
which reduces m°A levels in the coding sequence region of the
peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1a) transcript. This upregulates PGC-1a and inhibits lipid
accumulation in the liver through the BHMT/FTO/m°A/PGC-1a
pathway to alleviate NAFLD (94) (Figure 5A). Betaine activates
various primary signaling pathways involved in metabolic regulation.
It can inhibit the expression of lipid metabolism-related genes through
the FGF10/AMPK pathway, facilitate fatty acid B-oxidation, and
alleviate endoplasmic reticulum stress by restoring the expression of
liver X receptor alpha and PPAR«. Additionally, it enhances the Akt/
mechanistic target of rapamycin signaling pathway, activates
autophagy, and stimulates insulin receptor substrate 1 to activate
downstream signaling pathways, thereby alleviating hepatic steatosis,
gluconeogenesis, and inflammatory response (22, 95-97). Betaine
exhibits significant antioxidant and anti-inflammatory effects. It
enhances the metabolism of sulfur-containing amino acids to enhance
antioxidant defense, and reduce oxidative stress, expression of
inflammatory factors [TNF-a, cyclooxygenase-2 (COX-2), and
inducible nitric oxide synthase (iNOS)], and cell apoptosis through
signaling pathways, such as high mobility group box 1/toll-like
receptor 4 (TLR4), thereby restoring liver function (98-100).
Additionally, betaine enhances mitochondrial function, reduces the
number of swollen mitochondria, and increases autophagosome
formation, thereby alleviating damage to liver cells (101). Notably, the
effects of betaine were cross-organ and cross-generational. Maternal
betaine supplementation can enhance high-fat diet-induced NAFLD
by regulating the gut microbiota and SCFAs in the offspring (102)
(Figure 5B). Moreover, the protective effects of betaine on the liver
may involve intergenerational communication between the liver and
brain, such as regulating brain phospholipid metabolism (103).
Clinical and pathological evidence supports its effectiveness. Patients
with NAFLD often have low betaine levels (104), and clinical
interventions have demonstrated that oral betaine can significantly
reduce serum alanine aminotransferase and  aspartate
aminotransferase levels and enhance fat degeneration, inflammatory
necrosis, and fibrosis (105). Although betaine failed to enhance
hepatic steatosis, it prevented the worsening of hepatic steatosis (106).
In animals, betaine can effectively reduce the liver triglyceride content,
inhibit liver cell swelling and necrosis, and reduce lipid deposition
(107, 108). In summary, betaine exhibits significant potential for
preventing and alleviating NAFLD through synergistic effects on
various targets and pathways.

5.3.3 Alcoholic fatty liver disease

Betaine exerts a significant protective effect against ethanol-induced
alcoholic liver damage through various pathways. Its core mechanism
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FIGURE 5
Mechanisms underlying the protective effects of betaine in various liver diseases and injury. Betaine works by improving the gut dysbiosis, increasing
short-chain fatty acid levels, reshaping the SAM/SAH ratio, enhancing antioxidant defense, and inhibiting apoptosis (A); regulating the expression of
genes such as PGC-1a through m°A methylation of DNA (B); downregulating the levels of genes and proteins related to lipogenesis and upregulating
the levels of genes and proteins related to fatty acid oxidation (FAS, ACC, SREBP-1c|; CPT-1PPARat) (C); and participating in the regulation of
molecular signaling pathways related to AMPK, Akt/mTOR, endoplasmic reticulum stress, and inflammation (D), thereby preventing and treating liver
damage caused by NAFLD, AFLD, liver fibrosis/cirrhosis, and chemical/drug liver damage.

focuses on restoring methyl metabolic homeostasis, enhancing lipid
metabolism, and antagonizing oxidative stress-induced damage. The
main role of betaine is to reshape methyl metabolism balance in the
liver. Betaine supplementation can enhance hepatic methionine
metabolism and SAM levels in the early stages, facilitate choline-
histidine methyltransferase activity, and reduce hepatic triglyceride
accumulation (109). Additionally, betaine significantly upregulates the
expression of BHMT-1, methionine adenosyltransferase-1, and glycine
N-methyltransferase, effectively increasing the levels of SAM in the liver
and restoring the normal SAM/SAH metabolic ratio (110-114).
Normalization of this crucial ratio enhances the activity of
phosphoethanolamine methyltransferase, restores normal synthesis of
phosphatidylcholine to reduce fat deposition (112), reactivates the
repair response mediated by protein L-isoaspartate methyltransferase
(111), and attenuates liver damage caused by reduced methylation of the
protein phosphatase 2a (PP2A) catalytic subunit (115). Notably, betaine
can inhibit alcohol-induced increases in hepatocyte SAH (a potent
inhibitor of methylation reactions), increase caspase-3 levels, and reduce
DNA content, demonstrating therapeutic potential (116). In regulating
lipid metabolism, betaine can directly inhibit primary lipogenesis genes,
including diacylglycerol O-acyltransferase 1/2, SREBP-1c, and FAS,
while upregulating factors, such as PGC-1a, thereby synergistically
enhancing alcohol-induced liver lipid accumulation (117, 118)
(Figure 5C). Additionally, betaine exhibits strong antioxidant and anti-
inflammatory capabilities, alleviating oxidative damage by reversing
GSH depletion, increasing MDA levels, reducing vitamin A content,
and inhibiting cytochrome p450 family 2 subfamily E member 1
expression and hydroxytaurine production (113, 119). Simultaneously,
betaine can inhibit primary inflammatory signaling pathways, such as
TLR4, prevent the upregulation of related proinflammatory factors and
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signaling molecules (TLR2/4, IL-1, and signal transducer and activator
of transcription 3), and alleviate the inflammatory response (120, 121).
Notably, betaine may facilitate adrenaline synthesis by affecting
phenylethanolamine N-methyltransferase, thereby indirectly increasing
the alcohol metabolism rate and preventing excessive alcohol
concentrations (122). The study demonstrated that betaine protects the
liver in a dose-dependent manner, with 0.5% betaine in feed sufficient
to raise SAM levels that prevent fatty liver disease (114). However, the
effects of betaine are selective. For example, in certain models, it did not
reverse carbonic anhydrase-IIT downregulation or reduce the expression
of TNF-a and cluster of differentiation 14 mRNA (110, 123), indicating
that its mechanism of action is highly specific. In summary, by
correcting the imbalance in methyl metabolism, betaine synergistically
regulates lipid metabolism, oxidative stress, and inflammatory pathways,
forming a multidimensional protective network against alcoholic
liver damage.

5.3.4 Other liver damage types

Betaine protects against various types of liver damage, including
chemical poisoning, drugs, liver fibrosis, and cirrhosis. Its efficacy is
achieved through various mechanisms, including antioxidant, anti-
inflammatory, metabolic, and epigenetic regulation.

5.3.4.1 Chemical and drug-induced liver damage

In liver injury models induced by chemical poisons and drugs,
such as carbon tetrachloride, diethylnitrosamine, acetaminophen,
thioacetamide, and cisplatin, betaine exerts core protective effects
primarily by enhancing antioxidant defense and inhibiting
inflammation. Betaine can significantly increase the activity of
antioxidant enzymes [SOD and glutathione peroxidase (GPx)], restore
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GSH levels, reduce MDA content, inhibit the expression of primary
inflammatory factors (NF-kB, TNF-q, and COX-2), and inhibit lipid
deposition and degeneration (124-131) (Figure 5D). Additionally,
betaine can protect mitochondrial function by protecting complex II
activity and inhibiting apoptosis by inhibiting caspase-3, thereby
maintaining hepatocyte structural integrity (21, 126, 131, 132).
Betaine may play a protective role against niacin-induced
hepatotoxicity by preventing SAM depletion (133).

5.3.4.2 Liver fibrosis and cirrhosis

In aliver fibrosis model induced by a high-fat diet combined with
carbon tetrachloride, bile duct ligation, ethanol, and other factors,
betaine exerted its effects through the aforementioned antioxidant and
anti-inflammatory mechanisms and directly targeted the antifibrosis
pathway. Betaine can effectively delay the progression of fibrosis by
downregulating TGF-f1, alpha-smooth muscle actin (@-SMA), and
collagen type I alpha 1 chain (COL1A1), regulating the balance of
inhibitor ~ of
metalloproteinase-1/-2, and inhibiting the activation of hepatic stellate
cells (23, 125, 134-136). Clinical observations have demonstrated that
plasma betaine levels in patients with cirrhosis are associated with

matrix  metalloproteinase-2  and  tissue

disease severity and decrease after liver transplantation, indicating
their association with disease progression (137).

5.3.4.3 Special types of liver injury caused by radiation,
ischemia-reperfusion, and viral hepatitis

In radiation-induced liver injury and liver ischemia-reperfusion
models, betaine plays a protective role mainly via its strong antioxidant
activity, delaying tissue damage (124, 138). In chronic hepatitis C,
betaine exhibits immunomodulatory potential and enhances
interferon o antiviral signaling by restoring signal transducer and
activator of transcription 1 methylation (139).

5.3.4.4 Transgenerational programming effects and
developmental regulation

The protective effects of betaine are characteristics of
transgenerational epigenetic programming. Maternal betaine intake
(rats and pigs) can programmatically alter liver metabolism, cell
proliferation, and the developmental trajectory of offspring—and even
the F2 generation—by affecting the DNA methylation pattern of the
insulin-like growth factor (IGF) gene family (IGF-1/2) in the liver of
the offspring and regulating the expression of glucocorticoid receptor
signaling and lipolysis genes (adipose triglyceride lipase and hormone-
sensitive lipase) (25, 140-145).

Betaine exhibits multitarget protective effects. Its main function is
to provide methyl groups and synergistically regulate various
pathways—including antioxidative stress, inflammation suppression,
metabolic homeostasis, and epigenetic programming—thereby
forming a networked protective system. This has the potential for
effective prevention and treatment of various liver injuries, including
the chemical, fibrotic, and viral types.

5.4 Betaine for the prevention and
treatment of cardiovascular disease

Existing studies on the association between betaine and
cardiovascular health have yielded inconsistent results. Several
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large-scale, long-term follow-up studies have demonstrated no
significant association between betaine intake and the risk of
cardiovascular disease morbidity or mortality in the general adult
population (146-149). A study involving 18,076 novel cardiovascular
disease events further confirmed the lack of a significant association
between the two diseases (148). However, betaine has demonstrated
different effects in specific populations or disease contexts. For
example, in the Guangdong population of China, higher dietary
betaine intake was associated with a lower risk of cardiovascular death
(150). In patients with ischemic stroke, betaine helped reduce the risk
of recurrent cardiovascular events and enhanced cognitive function
(151, 152). In African Americans, dietary betaine intake increased
nonlinearly with the risk of coronary heart disease (153). Regarding
biomarkers, low-dose betaine supplementation (<4 g/day) can reduce
homocysteine levels without causing lipid abnormalities (154), but
daily supplementation of >4 g may slightly increase total cholesterol
levels (155). Betaine levels are inversely associated with blood pressure,
particularly in women (156). At the mechanistic level, betaine may
exert a cardioprotective effect by inhibiting oxidative stress,
inflammation, and fibrosis by regulating the AMPK/nuclear factor
erythroid 2-related factor 2 (Nrf2)/TGF-p signaling pathway (24), and
enhance pulmonary hypertension and ischemia-reperfusion injury in
animal models (Figure 6A). Additionally, the mechanism may be
associated with the regulation of Ras homologous family member A/
Rho-associated coiled-coil-containing protein kinase pathway (157,
158). Lower plasma betaine levels are associated with an increased risk
of heart failure and myocardial infarction (159). In patients with
hypertension, a U-shaped relationship was observed between serum
betaine levels and the risk of first ischemic stroke (160). Overall, the
effects of betaine on the cardiovascular system are heterogeneous
across different populations and are dose-dependent. For example,
daily supplementation of 4 g for more than 6 weeks may lead to a
moderate increase in the levels of plasma total cholesterol (155) and
(161), which is detrimental to

trimethylamine  oxide

cardiovascular health.

5.5 Betaine for the prevention and
treatment of kidney disease

The effects of betaine on kidney health are multifaceted across
models and populations; however, these effects are context-dependent.
In cats with chronic kidney disease (CKD), betaine supplementation
enhances renal health and reverses weight loss, possibly through its
effects on one-carbon metabolism, gut microbiota, body composition,
and plasma metabolome (162, 163). Similarly, betaine positively
modulated plasma and fecal metabolites in a dog model of chronic
kidney disease (164). However, population-based studies have
demonstrated mixed results. A study of 478 patients with CKD
revealed that higher plasma betaine concentrations were a risk factor
for adverse renal outcomes (165). In the context of CKD, betaine may
also exhibit adverse effects, via multiple molecular mechanisms. For
example, the accumulation of TMAO levels in the body promotes
renal fibrosis, inflammation, and atherosclerosis, thereby accelerating
the progression of CKD (166, 167); high betaine levels may lead to
abnormal methylation of profibrotic genes (such as TGF-f and
COLI1ALl), promoting renal interstitial fibrosis (168); and methylation
cycle disorders in patients with CKD lead to homocysteine
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Mechanisms underlying the effects of betaine in preventing and treating cardiovascular, kidney, and Alzheimer's diseases. Betaine reduces hypertension
and ischemia-reperfusion injury by inhibiting Ras homologous family member A/Rho-associated coiled-coil-containing protein kinase and enhances
cardiovascular function by activating the adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2 (Nrf2)/
transforming growth factor-beta pathway, thereby reducing oxidative stress, inflammation, and fibrosis (A); reduces oxidative stress,
neuroinflammation, and apoptosis by activating Nrf2/heme oxygenase-1, thereby enhancing glomerular function and kidney health (B); enhances
cognition and memory by inhibiting amyloid-beta production, oxidative stress, NOD-, LRR-, and pyrin domain-containing protein 3/nuclear factor
kappa-light-chain-enhancer of activated B cells pathway, and inflammation, and by activating protein phosphatase 2a to inhibit Tau

accumulation, whereas abnormal betaine metabolism may exacerbate
reactive oxygen species production, promoting renal tubular damage
(169). These abnormal changes are likely closely related to renal
function, and kidney disease appears to disrupt this process (Table 1).
However, plasma betaine levels were significantly associated with the
estimated glomerular filtration rate and exhibited good discriminatory
ability in distinguishing CKD states (170). In Chinese children and
adolescents, betaine intake may reduce the risk of hyperuricemia by
enhancing glomerular filtration (171). Mechanistically, numerous
animal experiments have revealed the protective potential of betaine,
whose effects are primarily reflected in combating oxidative stress,
inhibiting inflammatory responses, and regulating primary signaling
pathways. For example, in potassium chloride-induced hyperuricemic
mice (172), arsenic-exposed mice (173, 174), and sodium fluoride-
induced renal injury rat models (175), betaine exerts protective effects
by regulating urate transporters, inhibiting oxidative stress, and
modulating the Nrf-2/heme oxygenase-1 (HO-1) signaling axis
(Figure 6B). In various renal injury models induced by high fructose

(176), cadmium (177), cisplatin (178), doxorubicin (179),
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isoproterenol (180), and carbon tetrachloride (181), betaine protects
renal function through various mechanisms, such as reducing lipid
deposition, inhibiting inflammasome activation, and inhibiting
apoptosis. Additionally, betaine enhances renal pathological damage
in diabetic pregnant mice (182) and thioacetamide-induced renal
injury mouse models (183).

5.6 Betaine for the prevention and
treatment of Alzheimer’s disease

Betaine has demonstrated multipathway protective potential in
various experimental models of Alzheimer’s disease (AD). In
amyloid-beta (Ap)-induced AD rat or mouse models, betaine can
effectively enhance cognitive dysfunction and memory impairment,
and its effects are closely associated with increasing GSH, reducing
oxidative markers such as MDA, and activating primary proteins
such as SIRT1 (184-186). In a homocysteine-induced cognitive
impairment model, an independent risk factor for AD, betaine
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TABLE 1 Clinical studies investigating the effects of betaine in various diseases.

Model/Population Disease/Condition Intervention method Intervention dosage Mechanism (s) Adverse effects References
12 healthy males; 3 patients Single dose 50 mg/kg; or 50 mg/ | Methyl donor; converts homocysteine to
Homocystinuria Oral (anhydrous betaine powder) Safe and well tolerated (13)
with homocystinuria kg twice daily methionine via BHMT enzyme
55 patients with biopsy-
NASH Oral (anhydrous betaine powder) | 20 g daily for 12 months Lowers SAH; improves hepatic steatosis Minor GI upset in some (106)
proven NASH
13,440 ARIC study Dietary intake (prospective Median intake: 74.5-114.8 mg/ Osmoprotection; involvement in one-
T2D risk N/A (observational study) (61)
participants cohort) day carbon metabolism
Dietary intake (prospective Lowers SAH and tHcy levels; increases
1,292 patients with CAD CAD mortality Range: 100-400 mg/day N/A (observational study) (150)
cohort) SAM and SAM/SAH ratio
4,336 participants from the Serum metabolite levels Regulation of lipid metabolism and insulin
T2D Median plasma: 34.1 pmol/L N/A (observational study) (58)
PREVEND study (observational) sensitivity
Dietary intake (prospective Potential epigenetic effects; homocysteine
6,022 Iranian adults T2D Mean intake: ~104 mg/day N/A (observational study) (62)
cohort) remethylation
2,606 adults (Tehran Lipid Dietary intake (prospective Precursor for cell membrane
CVD Geometric mean: 78 mg/day N/A (observational study) (146)
and Glucose study) cohort) phospholipids and neurotransmitters
29,079 Japanese residents Dietary intake (prospective Reduction of inflammatory markers (CRP,
CVD Range: ~50-150 mg/day N/A (observational study) (147)
(Takayama study) cohort) 1L-6)
Dietary intake (prospective Modification of DNA methylation and
14,430 middle-aged adults CHD Mean: ~100 mg/day N/A (observational study) (149)
cohort) one-carbon metabolism
Type 2 diabetes patients Diabetic microvascular Plasma betaine levels Inhibition of VEGF signaling and
Circulating levels N/A (observational study) (59)
(ZODIAC study) complications (observational) mesangial cell proliferation
Diarrhea, prostatitis
Methyl donor; lowers serum
8 patients with probable mild 3 g twice daily (6 g/day) for (1 patient); myocardial
AD Oral (anhydrous powder) homocysteine; increases brain methionine (195)
Alzheimer’s disease 24 weeks infarction (1 patient, likely
and SAM to delay disease progression
unrelated)
Lowers Hcy; reduces tau phosphorylation;
97 AD patients (malnutrition 50, 100, and 200 pg/kg for increases PP2Ac activity; inhibits A
AD; hyperhomocysteinemia Oral (diet intervention) Not reported (200)
vs. non-malnutrition) 1 month accumulation; suppresses TNF-ac and
IL-1p
Neurotransmitter synthesis; cell
Ischemic stroke patients Recurrent stroke; cardiovascular
Observational (plasma levels) N/A (baseline circulating levels) = membrane integrity; methyl-group N/A (observational study) (151)
(nested case-control) events
metabolism (Hcy reduction)
Inverse association with cognitive decline;
Acute ischemic stroke
Post-stroke cognitive impairment Observational (plasma levels) N/A (baseline circulating levels) | potential neuroprotective effects via one- N/A (observational study) (152)
patients (CATIS trial)
carbon metabolism

(Continued)
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TABLE 1 (Continued)

Model/Population Disease/Condition Intervention method Intervention dosage Mechanism (s) Adverse effects References
Betaine insufficiency linked to unfavorable
531 patients with ACS Secondary MI; Heart failure; death Observational (plasma and urine) | N/A (baseline circulating levels) | vascular risk and metabolic syndrome N/A (observational study) (159)
profiles
Hypertensive patients (nested Serves as a methyl donor; prevents
First ischemic stroke Observational (serum levels) N/A (baseline circulating levels) N/A (observational study) (160)
case—control) premature apoptosis; osmoprotection
Betaine acts as a precursor to TMAO via
3,903 stable cardiac patients
MACE Observational (plasma levels) N/A (baseline circulating levels) | gut microbiota; high levels are pro- N/A (observational study) (161)
undergoing angiography
atherogenic when TMAO is elevated
Interaction with renal function and gut-
Patients with moderate to
i 4. CKD Cardiovascular and renal outcomes Observational (plasma levels) N/A (baseline circulating levels) =~ microbiota metabolites (TMAO); one- N/A (observational study) (165)
advance:
carbon cycle metabolism
Precursor for TMAO; contributes to renal
521 stable subjects with CKD | Chronic kidney disease; mortality Observational (plasma levels) N/A (baseline circulating levels) = tubulointerstitial fibrosis and progressive N/A (observational study) (166)
renal dysfunction
Linked to GFR and markers of
Inflammation and mortality in
179 CKD stage 3-5 patients CKD Observational (plasma levels) N/A (baseline circulating levels) | inflammation; precursor for gut-microbial | N/A (observational study) (167)
generation of TMAO
Methyl donor; anti-inflammatory effects;
612 ischemic stroke patients
(CATIS trial) PSD Observational (plasma levels) N/A (circulating plasma levels) neuroprotective role in neuroplasticity and | N/A (observational study) (201)
tria
recovery
Methyl donor for homocysteine GI disorders (diarrhea,
11 children with CBS or cbIC | CBS deficiency; cblC deficiency 100 mg/kg/day vs. 250 mg/kg/
Oral (twice-daily dose) remethylation via BHMT enzyme; vomiting, pain), fever, (202)
deficiency (homocystinuria) day
chemical chaperone headache, muscular pain
Required for methionine generation; Flu-like symptoms, fatigue,
Oral (combination with SAMe,
29 patients with CHC CHC 6 g/day recycling of SAMe; potentiates IFNa GI symptoms (diarrhea, (203)
PeglIFN, Ribavirin)
signaling pain), skin/mood issues
29 patients with chronic Alternate methyl donor for remethylation
ESRD; hyperhomocysteinemia Oral (with folic acid) 4 g daily for 12 weeks Not specifically detailed (204)
haemodialysis of homocysteine to methionine
8 healthy white male Elevated homocysteine Oral (supplement or high-betaine | ~500 mg supplement or Major tissue osmolyte; substrate for Indigestion and diarrhea (at (205)
volunteers (postmethionine load) meal) ~517 mg meal BHMT to remethylate homocysteine higher pharmacologic doses)
2,568 patients with suspected Mitochondrial oxidation product of
SAP; AMI risk Observational (plasma levels) N/A (circulating plasma levels) N/A (observational study) (206)
stable angina pectoris choline; osmolyte and methyl donor
Substrate for BHMT; converts
90 patients undergoing Observational/randomized (part N/A (baseline/post-methionine
CAD; hyperhomocysteinemia homocysteine to methionine; determinant | Not reported (207)
coronary angiography of B-vitamin trial) load levels)
of postmethionine load tHcy
(Continued)
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TABLE 1 (Continued)

Model/Population

Disease/Condition

Intervention method

Intervention dosage

Mechanism (s)

Homocysteine lowering via remethylation;

Adverse effects

References

and humans

precursor to TMAO

compared to choline or

L-carnitine)

gut microbiota, increasing the risk of CKD

fibrosis and dysfunction

44 patients with CAD Endothelial dysfunction; CAD Oral (betaine anhydrous) 100 mg/kg/day for 6 weeks Not reported (208)
testing effect on FMD
Decreases hepatic fat; anti-inflammatory
10 g daily (divided into 2 doses) Well-tolerated; no significant
Patients with SBS Hepatopathy (hepatic steatosis) Oral (betaine anhydrous) (reduces IL-6, TNF-a); homocysteine (209)
for 3 months adverse effects
regulation
5 patients with pyridoxine-
Homocystinuria; Osteoporosis (low 3 g twice daily (6 g/day) for Reduces plasma homocystine; increases
non-responsive Oral (crossover study) No adverse effects (210)
bone density) 2 years plasma methionine
homocystinuria
Cardiovascular risk; homocysteine Oral (choline bitartrate as betaine | 400 mg/day or 1,100 mg/day Choline is oxidized to betaine; betaine acts
161 postmenopausal women Not reported (211)
status precursor) choline as a methyl donor to lower fasting tHcy
Not specified (noted as a “lesser
Animal models (implied Choline oxidation produces high levels of | Increased TMAO leading to
Dietary intake/metabolism as a degree” contributor to TMAO
through metabolic pathways) | Atherosclerosis and CKD betaine, which is converted into TMAO by | renal tubulointerstitial (166)

ACS, acute coronary syndrome; AD, Alzheimer’s disease; ARIC, atherosclerosis risk in communities; CAD, coronary artery disease; CATIS, China Antihypertensive Trial in Acute Ischemic Stroke; CHC, chronic hepatitis C; CHD, coronary heart disease; CKD, chronic
kidney disease; CVD, cardiovascular disease; ESRD, end-stage renal disease; eGFR, estimated glomerular filtration rate; FMD, flow-mediated dilatation; Hcy, homocysteine; NASH, nonalcoholic steatohepatitis; PREVEND, prevention of renal and vascular end-stage
disease; PSD, poststroke depression; SAH, S-adenosylhomocysteine; SAMe, S-adenosyl-methionine; SAP, stable angina pectoris; SBS, short bowel syndrome; T2D, type 2 diabetes; TMAO, trimethylamine-N-oxide; UACR, urine albumin-to-creatinine ratio; UAE,

urinary albumin excretion.
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alleviated cognitive impairment by inhibiting the NLRP3/caspase-1/
GSDMD pathway in an m°A-YTHDF2-dependent manner, thereby
suppressing microglial pyroptosis (187). At the molecular level,
betaine regulates the processing of amyloid precursor proteins by
enhancing a-secretase activity and reducing p-secretase activity,
thereby reducing A production (188). Additionally, it activates
PP2A to reduce Tau protein hyperphosphorylation (189) and
inhibits the nucleotide-binding oligomerization domain-, leucine-
rich repeat- and pyrin domain-containing protein 3/NF-xB
signaling pathway to alleviate neuroinflammation (190) (Figure 6C).
Moreover, betaine exerts neuroprotective effects by inhibiting the
expression of ferroptosis-related factors (acyl-CoA synthetase long-
chain family member 4 and transferrin receptor 1) (191).
Furthermore, in 3xTg transgenic AD model mice and
Caenorhabditis elegans models, betaine enhanced synaptic function
and alleviated AP toxicity (192, 193). In clinical research, a meta-
analysis of 7,009 patients with AD indicated that betaine enhanced
the cognitive function and improved the quality of life (194).
However, the results of small-scale human trials remain unclear and
should be verified with larger samples (195). In summary, betaine
may play a significant role in the prevention and intervention of AD
through various mechanisms, such as anti-oxidation, anti-
inflammation, regulation of Ap and Tau pathology, and inhibition
of ferroptosis.

6 Challenges for the use of betaine in
disease prevention and treatment

Based on the current research on betaine use for the prevention
and treatment of chronic diseases (196), the vast majority of
experimental results from basic research have been positive. However,
disease enhancement has rarely been observed in clinical studies. This
may be because numerous factors affect the population and studies
primarily rely on semi-quantitative questionnaires that limit the ability
to accurately assess intake. Additionally, betaine is easily absorbed by
the human body and its intake is not problematic. Betaine primarily
acts as a methyl donor; however, folic acid, vitamin B12, and choline
can also serve this function, which may diminish its unique molecular
biological role. The mechanisms of betaine metabolism likely involve
methylation, gut microbiota, inflammation, oxidative stress, and
apoptosis. Owing to its complexity, betaine may be more suitable for
dietary supplementation rather than for targeted drug development.
High betaine intake may cause gastrointestinal discomfort, and the
long-term safety of high-dose use remains limited, particularly in
patients with chronic diseases or in the elderly. During normal
supplementation, a daily intake of no more than 6 mg/(kg-bw) of
betaine is considered safe (197). High doses (>3 g/single dose) can
cause nausea, diarrhea, and gastrointestinal discomfort, possibly due
to increased intestinal water secretion caused by high osmotic
pressure. These dose-dependent discomfort symptoms can be
alleviated by taking the medication in divided doses or with food.
Betaine should be used with caution in individuals with CKD and in
those requiring cholesterol control, as it may exacerbate disease
progression (166, 198). Current research also indicates that betaine
has extremely low toxicity and is not heritable (197, 199). Therefore,
large-scale clinical research and deeper mechanistic exploration are
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required to supplement its specific effects, supplementary dosage, and
disease intervention time to maximize its role in preventing and
treating chronic diseases.

7 Conclusion

As a primary methyl donor and osmotic pressure regulator,
betaine plays a crucial role in the prevention and treatment of various
chronic diseases (obesity, diabetes, metabolism-related fatty liver
disease, CKD, and Alzheimer’s disease). Its mechanism of action
primarily involves inhibiting the inflammatory response, reducing
oxidative stress, resisting apoptosis, and regulating gene expression
through epigenetic modifications (DNA methylation). Additionally,
betaine can significantly alleviate tissue damage and disease processes
caused by drug toxicity, viral infection, and chemical exposure.
Although preclinical research data on betaine are encouraging, the
conclusions drawn from population epidemiological surveys and
randomized controlled clinical trials are inconsistent, and most
studies have failed to its replicate significant protective effects. This
indicates that the therapeutic efficacy of betaine may be affected by
various complex factors. However, in this article, we did not compare
all the benefits of betaine and exercise and only analyzed the main
mechanisms by which exercise affects disease prevention and
treatment. Furthermore, it lacks a comprehensive and detailed analysis
of the molecular mechanisms of betaine, as well as quantitative data
presentation. Future research should introduce advanced technologies,
such as multiomics integrated analysis to systematically clarify the
precise targets and core regulatory networks of betaine in the human
body, reveal the reasons for its variable effects in different individuals,
and identify the subgroups most likely to benefit. Therefore, these
in-depth studies will provide primary evidence for determining
whether betaine has the potential to be a clinically effective nutritional
supplement or therapeutic drug and guide its precise application.
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