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Betaine, a natural compound found in beets, wheat germ, shellfish, and mammalian 
tissues, plays a crucial role in preventing and treating various chronic diseases. 
As the global population ages, chronic diseases are posing the primary threat to 
the health of the elderly, significantly increasing the medical pressure on families 
and society. Chronic diseases associated with aging involve complex molecular 
mechanisms and, therefore, developing multipronged interventions is crucial for 
their prevention and treatment. Although exercise is a primary intervention for 
preventing and treating chronic diseases, many elderly individuals have motor 
disabilities. Therefore, researchers are exploring natural products that mimic the 
therapeutic effects of exercise in individuals who are unable to exercise. Betaine 
has exhibited significant preventive and therapeutic effects in studies on chronic 
diseases and is known as an exercise mimetic. A deeper understanding of betaine 
may help elucidate crucial molecular mechanisms underlying its effects and offer 
theoretical insights for developing exercise-mimicking foods, supplements, and 
drugs, which are expected to benefit the human health.
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1 Introduction

In 2021, noncommunicable diseases resulted in 1.73 billion disability-adjusted life years 
(1). Chronic diseases are becoming increasingly common in younger populations. According 
to the 2025 World Health Statistics, 18 million people aged <70 years died of noncommunicable 
diseases globally in 2021, accounting for more than half of all deaths in this age group (2). 
Among Chinese people aged >70 years, the prevalence of multiple chronic diseases is 40% (3). 
Therefore, prevention and treatment of chronic diseases have become major global public 
health issues. Although clinicians and researchers have been successful in mitigating the 
progression of chronic diseases to a certain extent through surgery and drugs, the interventions 
are associated with high medical costs, reduced quality of life, and increased risk of 
complications (4). Early prevention and treatment may reduce disease incidence, with exercise 
playing a crucial role (5). The World Health Organization (6) and American College of Sports 
Medicine (7) recommend that older adults engage in physical activity at least 2–3 times per 
week to maintain cardiorespiratory, musculoskeletal, and neuromotor fitness. However, 
effective exercise is not feasible for individuals who are elderly, bedridden, or suffering from 
motor function loss. Therefore, researchers in sports medicine are exploring drugs, natural 
products, and synthetic small molecules that can replace exercise. Compared with drugs, 
small-molecule agonists, and/or inhibitors, natural ingredients may be safer and more suitable 
for long-term use and serve as sources of motion mimetics. Betaine, a trimethylglycine 
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abundant in plants, is a primary osmoprotectant and methyl donor 
that plays a significant role in preventing and treating chronic diseases. 
It has also been identified as an exercise mimetic. This article 
summarizes the role of betaine in the prevention and treatment of 
chronic diseases, providing molecular insights and a theoretical basis 
for developing functional foods, supplements, and drugs.

2 Betaine

Betaine (C5H11NO2) is a trimethyl derivative of glycine, with a 
molecular weight of 117.146 g/mol. This stable, nontoxic natural 
substance, discovered as a byproduct of beet processing, is widely 
present in microorganisms, plants, and animals. Dietary sources 
include wheat bran (1,339 mg/100 g), spinach (600–645 mg/100 g), 
beets (114–297 mg/100 g), shrimp (219 mg/100 g), and whole wheat 
bread (20 mg/100 g). It is also synthesized by the kidneys and liver (8, 
9) (Figure 1A). The median daily betaine intake for the general 
population is 224.77 mg (10), typically ranging between 100 and 
300 mg (11). It is rapidly absorbed through the duodenum, remains 
unbound to proteins, with its plasma content being 20–70 μmol/L (9, 
12) (Figure 1B). Because betaine can pass freely through the kidneys in 
its unmetabolized form, it is primarily converted into methionine, 
S-adenosylmethionine (SAM), and dimethylglycine in the body, with 
only small amounts excreted through urine and sweat. A single dose of 
betaine (50 mg/kg) in healthy young men reached a peak concentration 
of 1 mmol/L within 1 h. The elimination half-life of a single dose is 
approximately 14 h, and <5% of the dose remains after 72 h (13) 
(Figure 1C). Biologically, betaine functions primarily as a methyl donor 
in transmethylation and as an osmoprotectant. It participates in various 

biological processes by gradually removing methyl groups and forming 
sarcosine and glycine through decomposition and metabolism. As an 
osmoprotectant, betaine primarily protects cells from osmotic/ionic 
stress by regulating the concentration and volume of intracellular fluid. 
Additionally, it exhibits positive regulatory effects in various chronic 
disease models (14, 15). Betaine regulates cell signals, playing a 
significant role in disease prevention and treatment.

3 Betaine metabolism

Betaine transfers a methyl group to homocysteine to form 
methionine via a reaction catalyzed by betaine-homocysteine 
methyltransferase (BHMT). After losing its methyl group, betaine is 
converted into dimethylglycine, which undergoes oxidation in the 
mitochondria. Dimethylglycine dehydrogenase (DMGDH) removes 
a methyl group to produce sarcosine that enters the electron transport 
chain, generating reduced nicotinamide adenine dinucleotide/reduced 
flavin adenine dinucleotides (NADH/FADH2). Sarcosine 
dehydrogenase (SDH) removes the last methyl group of sarcosine to 
form glycine, generating NADH/FADH2. Methionine is converted to 
S-adenosylmethionine (SAM) via the transfer of adenosyl group from 
adenosine triphosphate (ATP) by methionine adenosyltransferase 
(MAT). SAM is the primary methyl donor for methylation reactions 
in the body, providing methyl groups for the modification of DNA, 
RNA, proteins, phospholipids (phosphatidylcholine), and 
neurotransmitters. After losing its methyl group, SAM is converted to 
S-adenosyl-l-homocysteine (SAH)—a potent methyltransferase 
inhibitor. Increased levels of SAH inhibit methylation reactions, 
making its rapid metabolism crucial. SAH is hydrolyzed by 

FIGURE 1

Schematic depicting the sources, synthesis, and kinetics of betaine. Betaine entering the circulatory system is derived from the consumed food and via 
synthesis in the liver (A); it is converted by the liver into methyl donors, such as S-sarcosine and glycine (B), as well as osmoprotectants, which 
participate in transmethylation and cell volume regulation, respectively. Some amount of betaine and its metabolites is excreted from the body through 
urine and sweat (C).
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S-adenosylhomocysteine hydrolase, resulting in the formation of 
homocysteine and adenosine. Homocysteine can reenter the BHMT 
pathway and get methylated by betaine to methionine, thereby 
completing the cycle. If the body is deficient in betaine or folic acid 
and requires cysteine, homocysteine cannot be remethylated to 
methionine. Instead, it combines with serine to generate cystathionine 
through cystathionine β-synthase (CBS), which is then cleaved by 
cystathionine γ-lyase to generate cysteine and α-ketobutyrate. Cysteine 
contributes to glutathione and protein synthesis and can be oxidized 
and decomposed into sulfate for excretion or is converted to taurine 
(Figure 2). Therefore, the contribution of betaine to the methionine 
cycle is crucial for maintaining normal cell function, gene expression 
regulation, antioxidant defense, and numerous biosynthetic pathways.

4 Molecular mechanisms underlying 
the exercise-mimicking effects of 
betaine

Betaine is involved in a variety of molecular mechanisms in the 
body. It exhibits similar effects as exercise in delaying aging and 
promoting health and is, therefore, considered an exercise mimic (16). 
Exercise is widely advocated as an intervention to promote health and 
prevent disease; it mainly activates AMPK through energy consumption 
and is involved in the regulation of multiple network mechanisms (17). 
Exercise can enhance the antioxidant, anti-inflammatory, and 
antiapoptotic effects, regulate immunity, activate autophagy, improve 
the mitochondrial quality, tissue integrity, circadian rhythm, genetics, 
endocrine system, and gut microbiota, and prevents and delays chronic 

diseases, such as cognitive decline and skeletal muscle atrophy (18). 
Betaine can also activate AMPK, reduce oxidative stress, endoplasmic 
reticulum stress, inflammation, and apoptosis, delay aging and cancer 
development, and plays a positive regulatory role in maintaining tissue 
integrity and mitigating chronic diseases (19, 20). Notably, the role of 
betaine in mimicking exercise is mainly reflected in activating AMPK 
(20), improving mitochondrial quality (21), regulating autophagy (22), 
reducing oxidative stress (23), inhibiting inflammation (24), and 
genetic modification (25). These are also important mechanisms for 
maintaining health and preventing and treating diseases. These studies 
have provided insights into the effects of betaine at the molecular level 
and form a theoretical basis for developing it as a functional food, 
nutritional supplement, and drug, benefitting human health.

5 Betaine and chronic diseases

Research on the use of betaine in the prevention and treatment of 
various chronic diseases is ongoing. Below, we provide a review of the 
literature on the effects of betaine in diseases, such as obesity, diabetes, 
liver disease, cardiovascular disease, kidney disease, and Alzheimer’s 
disease, and discuss the underlying mechanisms.

5.1 Betaine for the prevention and 
treatment of obesity

With industrialization, physical activities performed by humans 
have considerably decreased, resulting in energy surplus in the body, 

FIGURE 2

Metabolism of betaine. In a reaction catalyzed by betaine-homocysteine methyltransferase (BHMT), betaine loses a methyl group to form 
dimethylglycine, which is subsequently demethylated by dimethylglycine dehydrogenase (DMGDH) to form sarcosine that enters the electron 
transport chain. Sarcosine dehydrogenase (SDH) removes the last methyl group of sarcosine to form glycine. Homocysteine obtains the methyl group 
transferred by BHMT-catalyzed betaine to form methionine that is converted into S-adenosylmethionine (SAM) by methionine adenosyltransferase 
(MAT) via transfer of adenosyl group from adenosine triphosphate (ATP). SAM provides methyl groups for the methylation of DNA, RNA, proteins, 
phospholipids (phosphatidylcholine), and neurotransmitters.
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which leads to obesity—a global public health concern worldwide 
associated with various chronic diseases. Betaine has been widely 
studied for the prevention and treatment of obesity. Epidemiologically, 
people with a higher intake of betaine in their daily diet generally have 
a lower body weight (10, 26), which may be a consequence of reduced 
body fat (27). In middle-aged and elderly Chinese men, serum betaine 
levels were positively associated with lean body mass in the whole 
body, trunk, and limbs (28). In women, betaine supplementation did 
not enhance exercise performance but significantly reduced the 
percentage and mass of body fat (29). These results indicate that the 
effect of betaine in preventing obesity may not be affected by factors, 
such as age, total calorie intake, physical activity level, and trunk fat, 
consistent with the results of relevant studies on Newfoundland 
residents (30). However, supplementation with exogenous betaine had 
no significant effect on body weight, composition, or resting energy 
expenditure (31), indicating that a larger sample size and detailed 
studies are required for confirmation. However, betaine resistance 
may exist in obesity and prediabetes, possibly associated with low 
DMGDH levels that limits betaine metabolism (32). Therefore, the 
effects of betaine on weight management may require larger sample 
sizes and detailed studies.

The beneficial effects of betaine on obesity and related metabolic 
disorders have been confirmed in numerous studies. These effects 
involve various complementary pathways, such as energy metabolism, 
inflammation regulation, and gut microecological remodeling. In vivo 
experiments have demonstrated that betaine activates adenosine 
monophosphate-activated protein kinase subunit alpha 1 (AMPKα1), 
upregulating fatty acid oxidation, citric acid cycle, and mitochondrial 
oxidative phosphorylation, thereby accelerating lipid consumption 
and limiting weight gain (33, 34) (Figure 3A). In a high-fat, high-sugar 

diet-induced obese mouse model, betaine intervention significantly 
enhanced glucose utilization efficiency in the skeletal muscle and liver, 
lowered fasting blood glucose levels, and alleviated systemic 
inflammation (35) (Figure 3B). If combined with exercise training, the 
blood sugar-lowering effect is more significant (36). Betaine facilitates 
mitochondrial regeneration in white adipose tissue, induces browning 
of white adipocytes, and inhibits the expression of adipogenic genes. 
Additionally, it reduces the mRNA levels of proinflammatory 
cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and 
interleukin-12 (IL-12), both in muscle tissue in vivo and in adipose 
tissue cells in vitro, thereby alleviating high-fat diet-induced obesity 
and insulin resistance (37, 38), consistent with the results of facilitating 
the reduction of skeletal muscle lipid deposition and enhancing 
adipose tissue lipolysis (39) (Figure 3C). In vitro studies have 
confirmed that betaine can inhibit the expression of hypoxia-induced 
IL-6 and tumor necrosis factor-alpha (TNF-α) mRNAs in human 
adipocytes, indicating that it directly acts on adipose tissue to reduce 
obesity-related low-grade inflammation (38). Moreover, it exhibited 
conservative metabolic-protective effects in lower vertebrate models. 
After betaine treatment of high-fat-induced obese black sea bream 
juveniles, the silent information regulator transcript 1/sterol 
regulatory element-binding protein 1/peroxisome proliferator-
activated receptor alpha (SIRT1/SREBP-1/PPARα) axis was activated, 
anti-inflammatory cytokines transforming growth factor-beta 1 
(TGF-β1) and IL-6 were upregulated, whereas proinflammatory 
signals, such as nuclear factor kappa-light-chain-enhancer of activated 
b cells (NF-κB), TNF-α, and interleukin-1 beta (IL-1β) were 
downregulated, confirming its cross-species anti-inflammatory 
activity (40). However, the conclusions of these population-based 
studies are inconsistent. Certain randomized controlled trials have 

FIGURE 3

Molecular mechanisms underlying the effects of betaine in preventing and enhancing obesity. Betaine increases energy expenditure by activating the 
adenosine monophosphate-activated protein kinase–mitochondrial axis, thereby enhancing mitochondrial oxidative phosphorylation (A); improving 
hepatic and skeletal muscle glucose utilization, reducing lipomatosis, and improving insulin sensitivity and fasting blood glucose (B); promoting white 
adipose tissue consumption and mitochondrial regeneration, and inhibiting adipogenesis genes, fat deposition, and inflammation (C); increasing DNA 
methylation through the gut microbiota-short-chain fatty acid-epigenetic cascade, thereby inhibiting lipid synthesis and enhancing insulin sensitivity 
(D); and regulating metabolic homeostasis and gut microbiota in the offspring to prevent early-onset obesity and improve metabolic health (E).
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demonstrated that betaine reduces the levels of circulating 
inflammatory markers; however, the differences were not statistically 
significant. This may be associated with the small sample size, short 
intervention period, and numerous confounding factors. A large 
sample size and long-term intervention are required for validation 
(41). Additionally, betaine exerts antiobesity effects by reshaping the 
gut microbiota and its metabolites. In a high-fat diet mouse model, 
betaine facilitated the proliferation of beneficial bacteria, such as 
Akkermansia muciniphila, Lactobacillus, and Bifidobacterium, and 
increased the production of acetate and butyrate. Short-chain fatty 
acids (SCFAs) inhibit lipid synthesis and enhance insulin sensitivity 
by increasing the DNA methylation of the miR-378a promoter (42, 43) 
(Figure 3D). A dose-effect study further confirmed that betaine 
intervention at a dose of 120 mg/kg body weight for 4 weeks was 
adequate to significantly enhance glycemic and lipid profiles and 
reduce body weight in mice fed a high-fat diet (44).

The role of betaine is also reflected in maternal and child health. 
Maternal betaine intake affects obesity risk in the offspring. In 
experiments on obese rats, betaine supplementation during pregnancy 
helped the offspring restore normal growth and developmental 
rhythms while reducing obesity (45). Whether the mother consumes 
betaine through diet during pregnancy or adds it to breast milk, it can 
regulate the metabolic state and gut microbiota composition of the 
offspring, thereby preventing early obesity and facilitating long-term 
metabolic health (46, 47) (Figure 3E). Additionally, human studies 
have confirmed that betaine content in the maternal body is associated 
with the birth weight and abdominal fat mass in babies. In particular, 
higher maternal betaine levels are associated with healthier birth 
weight and lower abdominal fat mass in infants (48).

Betaine synergistically enhances obesity and its metabolic 
complications through various targets via the AMPK-mitochondrial 
axis, SIRT1/SREBP-1/PPARα signaling, inhibition of inflammation, 
and the microbiota-SCFA-epigenetic cascade, providing a mechanistic 
basis for its clinical translation.

5.2 Betaine for the prevention and 
treatment of diabetes

Diabetes is a common metabolic disease, the onset of which is 
primarily caused by the combined effects of genetic susceptibility and 
acquired environmental factors (long-term high-sugar and high-fat 
diets, sedentary lifestyles, and obesity). The core pathological 
mechanism is insulin resistance in peripheral tissues and organs 
(reduced insulin sensitivity of muscles, fat, and liver) and reduced 
pancreatic β-cell function (insufficient or delayed insulin secretion), 
resulting in increased blood levels (49). No obvious symptoms might 
be present in the early stages of the disease; however, as the disease 
progresses, typical manifestations, such as polydipsia, polyphagia, 
polyuria, and weight loss occur. If blood sugar is not well controlled 
for a long time, it gradually damage tissues and organs throughout the 
body and may induce chronic complications, such as cardiovascular 
disease, kidney disease, neuropathy, and retinopathy (50).

5.2.1 Type 2 diabetes mellitus
The baseline betaine level in patients with type 2 diabetes mellitus 

(T2DM) is lower than that in healthy individuals (51); however, 
hyperglycemia is not the cause of increased betaine excretion (52). 

Nevertheless, it is significantly correlated with glycated hemoglobin 
levels (53). This is consistent with the results of another study that 
used liquid chromatography-tandem mass spectrometry to measure 
betaine in urine and plasma and a multivariate regression analysis to 
show that glycated hemoglobin was the strongest determinant of 
betaine excretion in patients with diabetes (54), although different test 
results have also been reported (55). Betaine is a marker of diabetes 
risk in high-risk individuals and has been reported to perform a direct 
role in regulating metabolic health (56). Lower betaine intake is 
associated with lower insulin levels, homeostatic model assessment of 
insulin resistance (HOMA-IR) (57), and an increased risk of other 
T2DM (58). For example, plasma betaine content in patients with 
T2DM is negatively associated with the occurrence of microvascular 
complications (59). In a population-based study in Newfoundland, 
high serum betaine levels were associated with low lipid levels and 
insulin resistance (60) (Figure 4A). In adults, higher betaine levels 
were negatively associated with lower diabetes-related markers, serum 
insulin concentrations, and HOMA-IR (57). However, no significant 
association between betaine use and diabetes was observed in some 
other studies. A follow-up study involving 13,440 participants 
demonstrated that dietary betaine intake was not associated with 
T2DM (61). A semi-quantitative food frequency questionnaire survey 
involving 6,022 participants aged ≥18 years in Tehran did not find any 
association between dietary betaine intake and T2DM (62). These two 
studies involved a large number of participants. Because of the 
numerous factors affecting human health, semi-quantitative food 
frequency questionnaires may not accurately reflect this phenomenon. 
Therefore, more rigorous clinical and basic studies are required to 
verify the relationship between betaine and T2DM.

5.2.2 Gestational diabetes
Gestational diabetes is a glucose metabolism disorder that often 

occurs during pregnancy. Reduced serum betaine levels are an 
independent risk factor for gestational diabetes that may be associated 
with blood sugar regulation and short-term fluctuations (63). Higher 
dietary betaine intake among pregnant women in China was reported 
to be inversely associated with the risk of gestational diabetes mellitus 
in women without a history of childbearing (64). Betaine 
administration to mice after feeding a high-fat diet for 4 weeks before 
and during pregnancy to induce gestational diabetes alleviated 
morphological alterations in the placental junction area and increased 
the glycogen cell area in pregnant mice. Additionally, in vitro 
experiments have demonstrated that betaine can alter certain 
determinants of placental transport during the hyperglycemic 
response (65). In a streptozotocin (STZ)-induced gestational diabetes 
model, betaine significantly increased insulin levels, restored normal 
plasma total homocysteine concentrations, and enhanced insulin 
resistance and blood lipid status (66). Additionally, betaine could 
reduce increased DNA damage levels in the placental and embryonic 
tissues of rats at 14–20 days of gestation, with the best effect achieved 
when betaine was administered orally at a dose of 100 mg/kg body 
weight (67) (Figure 4B).

5.2.3 Diabetic complications
Basic research on the effects of betaine on diabetes is increasing, 

with some studies demonstrating positive results. Betaine can inhibit 
the activation of protein kinase B (Akt) in the retina of STZ-induced 
diabetic rats, thereby attenuating the increase in vascular endothelial 
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growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) 
expression and inhibiting neovascularization to delay diabetic 
retinopathy-associated complications (59) (Figure 4C). In the 
STZ-induced diabetic mouse model, oral administration of betaine 
reduced the levels of reactive oxygen species (ROS) and 
malondialdehyde (MDA) in the testicular tissue and increased the 
activities of superoxide dismutase (SOD), catalase (CAT), and 
glutathione (GSH), thereby inhibiting the p38 mitogen-activated 
protein kinase (p38 MAPK) signaling pathway and protecting against 
blood-testis barrier dysfunction (68) (Figure 4D). Similarly, in 
STZ-induced diabetic rats, betaine inhibited oxidative stress and 
inflammation while activating the phosphatidylinositol 3-kinase 
(PI3K)/Akt signaling pathway to enhance cognitive impairment (69) 
(Figure 4E). In a diabetic db/db mouse model, betaine alleviated 
endoplasmic reticulum and oxidative stress to enhance insulin 
resistance, hyperlipidemia, and tau protein hyperphosphorylation (70). 
In STZ-induced male diabetic rats, betaine reduced the increase in the 
levels of glycosylated hemoglobin in in blood, serum glucose, and 
lipids, and the pro-oxidative state in the liver and kidney (71) 
(Figure 4F). Betaine exerts a preventive effect, even in cases of diabetes 
caused by arsenic poisoning-induced impaired glucose tolerance (72). 
However, the use of certain drugs may result in the abnormal excretion 
of betaine from the body. Benazepril esters appear to aggravate betaine 
loss, resulting in increased plasma homocysteine levels (Figure 4G). 

Therefore, betaine supplementation should be considered when 
treating patients with fibric acid drugs (73).

Studies in human subjects and basic experiments show that betaine 
may have significant potential in the prevention, prediction, diagnosis, 
and treatment of diabetes and diabetic complications (Figure 4H). 
Although certain results were inconsistent, more authoritative 
experiments are required for verification of these findings.

5.3 Betaine for the prevention and 
treatment of liver disease

As a highly complex chemical factory, the liver plays a crucial role 
in metabolism and processing of proteins, fats, sugars, vitamins, and 
hormones. With modern lifestyle, liver disease has become common 
worldwide. Metabolic fatty liver disease affects 30% of the global 
population (74); however, no treatment is available for alcoholic liver 
disease (75). The effects of betaine on the liver have been assessed for 
decades, and positive effects via various molecular mechanisms have 
been reported.

5.3.1 Metabolic fatty liver
Metabolic fatty liver disease often coexists with metabolic 

disorders, such as obesity and metabolic syndrome, and can result in 

FIGURE 4

Molecular mechanisms underlying the effects of betaine in regulating certain tissues and functions in type 2 diabetes mellitus (T2DM), gestational 
diabetes, and diabetic complications. (A) In T2DM, betaine lowers blood lipids, HbA1c homeostatic model assessment of insulin resistance, serum 
glucose, and insulin resistance. (B) Betaine reduces the risk of gestational diabetes, mitigates DNA damage in placental and embryonic tissues, and 
increases the thickness of the placental attachment zone and labyrinth.  (C) Betaine reduces retinal Akt/vascular endothelial growth factor/hypoxia-
inducible factor 1-alpha and alleviates retinopathy. (D) In the testicular tissue, betaine reduces superoxide dismutase (SOD), malondialdehyde (MDA), 
and p38 mitogen-activated protein kinase signaling pathways and increases superoxide dismutase (SOD), catalase, and glutathione levels. (E) In the 
brain tissue, betaine activates phosphatidylinositol 3-kinase/protein kinase B (Akt) and enhances cognitive ability. (F) In the renal tissue, betaine reduces 
reactive oxygen species (ROS) and malondialdehyde (MDA) levels. (G) Benazepril and its analogs appear to exacerbate betaine loss, leading to elevated 
plasma homocysteine levels, suggesting that betaine supplementation should be considered. (H) Betaine plays preventive, predictive, diagnostic, and 
therapeutic roles in diabetes-related diseases.
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reduced betaine levels in the body (76). Betaine primarily regulates 
hepatic lipid metabolism by inhibiting lipogenesis and facilitating fatty 
acid oxidation. In the classic db/db mouse model of metabolic fatty 
liver, oral administration of betaine can inhibit the interaction 
between forkhead box protein O6 and peroxisome proliferator-
activated receptor gamma (PPARγ), inhibit the expression of primary 
lipogenic genes, such as fatty acid synthase (FAS) and acetyl-CoA 
carboxylase, and reduce hepatic lipid accumulation (77, 78). 
Simultaneously, betaine can significantly increase the expression of 
genes (carnitine palmitoyltransferase 1 and PPARα) and enhance fatty 
acid oxidation and lipid transport, thereby alleviating fat accumulation 
in the liver (79, 80). In a vitamin B6 deficiency-induced hepatic fat 
deposition model, betaine exhibited a significant inhibitory effect and 
restored methionine metabolism and very low-density lipoprotein 
secretion, the mechanisms of which may be associated with the 
restoration of the phosphatidylethanolamine-to-phosphatidylcholine 
conversion pathway (81, 82). Epigenetic regulation is another 
significant regulatory mechanism. For example, in a hen model, 
betaine inhibited lipogenesis and facilitated lipid decomposition by 
altering DNA methylation levels or mRNA N6-methyladenosine 
(m6A) modification in the promoter region of genes, such as sterol 
regulatory element-binding protein 1, FAS, and stearoyl-CoA 
desaturase, thereby reducing hepatic triglyceride deposition (83). The 
addition of demethylase blocked the regulatory effects of betaine on 
lipid metabolism and mitochondrial content, further confirming that 
betaine affects RNA methylation (84). Regarding glucose metabolism 
and whole-body energy balance, betaine can enhance the activity of 
enzymes associated with glucose uptake, glycogen synthesis, and 
decomposition in the liver and muscles, indicating its potential to 
regulate glucose metabolism disorders (35). Additionally, betaine 
supplementation can increase the levels of fibroblast growth factor 21 
(FGF21) in the liver and circulation, enhance white fat oxidation 
capacity and whole-body energy expenditure, thereby enhancing 
blood glucose homeostasis and metabolic health (79, 83, 85). 
Moreover, betaine exhibits antioxidant, anti-inflammatory, and gut 
microbiota-regulatory functions. In a high fructose-induced rat 
model, betaine reversed the increased levels of oxidative stress 
indicators and inflammatory factors and alleviated liver damage (86). 
In fish, betaine enhanced the structure of the gut microbiota, regulated 
trimethylamine metabolism and bile acid metabolism, and indirectly 
alleviated liver fat accumulation induced by a high-carbohydrate diet 
(87). Notably, the protective effect of betaine is consistent across 
species and has been verified in various models, such as mice, rats, 
fish, and poultry, even demonstrating a preventive effect during the 
embryonic or maternal supplementation stages (80, 83, 88). However, 
certain studies have indicated that although it facilitates growth in a 
growing pig model, it does not significantly affect fatty acid oxidation, 
indicating that the mechanism may be species-specific (89). Betaine 
regulates liver and systemic metabolism through various pathways 
and demonstrates broad potential for preventing and alleviating 
metabolic fatty liver disease. However, its specific mechanism of 
action varies based on the model and species, and further research is 
required to clarify this mechanism.

5.3.2 Nonalcoholic fatty liver disease
Betaine exhibits multilevel protective effects against nonalcoholic 

fatty liver disease (NAFLD) through mechanisms involving metabolic 
regulation, epigenetic modification, signaling pathway regulation, and 

enhancement of the gut microenvironment. Among these, epigenetic 
regulation plays a crucial role. As a methyl donor, betaine increases 
overall methylation levels and regulates abnormal DNA methylation 
[by regulating cytosine-phosphate-guanine (CpG) methylation in the 
promoter region of PPARγ and hepcidin antimicrobial peptide genes 
associated with lipogenesis and iron metabolism]. Additionally, it 
inhibits the m6A hypomethylation state, thereby regulating gene 
expression to reduce fatty acid synthesis and increase fat 
decomposition, which reduces lipid accumulation in the liver and 
protects it (90–93). Betaine can upregulate BHMT, enhance the 
production of nicotinamide adenine dinucleotide phosphate, and 
increase the expression of fat and obesity-related protein (FTO), 
which reduces m6A levels in the coding sequence region of the 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) transcript. This upregulates PGC-1α and inhibits lipid 
accumulation in the liver through the BHMT/FTO/m6A/PGC-1α 
pathway to alleviate NAFLD (94) (Figure 5A). Betaine activates 
various primary signaling pathways involved in metabolic regulation. 
It can inhibit the expression of lipid metabolism-related genes through 
the FGF10/AMPK pathway, facilitate fatty acid β-oxidation, and 
alleviate endoplasmic reticulum stress by restoring the expression of 
liver X receptor alpha and PPARα. Additionally, it enhances the Akt/
mechanistic target of rapamycin signaling pathway, activates 
autophagy, and stimulates insulin receptor substrate 1 to activate 
downstream signaling pathways, thereby alleviating hepatic steatosis, 
gluconeogenesis, and inflammatory response (22, 95–97). Betaine 
exhibits significant antioxidant and anti-inflammatory effects. It 
enhances the metabolism of sulfur-containing amino acids to enhance 
antioxidant defense, and reduce oxidative stress, expression of 
inflammatory factors [TNF-α, cyclooxygenase-2 (COX-2), and 
inducible nitric oxide synthase (iNOS)], and cell apoptosis through 
signaling pathways, such as high mobility group box 1/toll-like 
receptor 4 (TLR4), thereby restoring liver function (98–100). 
Additionally, betaine enhances mitochondrial function, reduces the 
number of swollen mitochondria, and increases autophagosome 
formation, thereby alleviating damage to liver cells (101). Notably, the 
effects of betaine were cross-organ and cross-generational. Maternal 
betaine supplementation can enhance high-fat diet-induced NAFLD 
by regulating the gut microbiota and SCFAs in the offspring (102) 
(Figure 5B). Moreover, the protective effects of betaine on the liver 
may involve intergenerational communication between the liver and 
brain, such as regulating brain phospholipid metabolism (103). 
Clinical and pathological evidence supports its effectiveness. Patients 
with NAFLD often have low betaine levels (104), and clinical 
interventions have demonstrated that oral betaine can significantly 
reduce serum alanine aminotransferase and aspartate 
aminotransferase levels and enhance fat degeneration, inflammatory 
necrosis, and fibrosis (105). Although betaine failed to enhance 
hepatic steatosis, it prevented the worsening of hepatic steatosis (106). 
In animals, betaine can effectively reduce the liver triglyceride content, 
inhibit liver cell swelling and necrosis, and reduce lipid deposition 
(107, 108). In summary, betaine exhibits significant potential for 
preventing and alleviating NAFLD through synergistic effects on 
various targets and pathways.

5.3.3 Alcoholic fatty liver disease
Betaine exerts a significant protective effect against ethanol-induced 

alcoholic liver damage through various pathways. Its core mechanism 
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focuses on restoring methyl metabolic homeostasis, enhancing lipid 
metabolism, and antagonizing oxidative stress-induced damage. The 
main role of betaine is to reshape methyl metabolism balance in the 
liver. Betaine supplementation can enhance hepatic methionine 
metabolism and SAM levels in the early stages, facilitate choline-
histidine methyltransferase activity, and reduce hepatic triglyceride 
accumulation (109). Additionally, betaine significantly upregulates the 
expression of BHMT-1, methionine adenosyltransferase-1, and glycine 
N-methyltransferase, effectively increasing the levels of SAM in the liver 
and restoring the normal SAM/SAH metabolic ratio (110–114). 
Normalization of this crucial ratio enhances the activity of 
phosphoethanolamine methyltransferase, restores normal synthesis of 
phosphatidylcholine to reduce fat deposition (112), reactivates the 
repair response mediated by protein L-isoaspartate methyltransferase 
(111), and attenuates liver damage caused by reduced methylation of the 
protein phosphatase 2a (PP2A) catalytic subunit (115). Notably, betaine 
can inhibit alcohol-induced increases in hepatocyte SAH (a potent 
inhibitor of methylation reactions), increase caspase-3 levels, and reduce 
DNA content, demonstrating therapeutic potential (116). In regulating 
lipid metabolism, betaine can directly inhibit primary lipogenesis genes, 
including diacylglycerol O-acyltransferase 1/2, SREBP-1c, and FAS, 
while upregulating factors, such as PGC-1α, thereby synergistically 
enhancing alcohol-induced liver lipid accumulation (117, 118) 
(Figure 5C). Additionally, betaine exhibits strong antioxidant and anti-
inflammatory capabilities, alleviating oxidative damage by reversing 
GSH depletion, increasing MDA levels, reducing vitamin A content, 
and inhibiting cytochrome p450 family 2 subfamily E member 1 
expression and hydroxytaurine production (113, 119). Simultaneously, 
betaine can inhibit primary inflammatory signaling pathways, such as 
TLR4, prevent the upregulation of related proinflammatory factors and 

signaling molecules (TLR2/4, IL-1β, and signal transducer and activator 
of transcription 3), and alleviate the inflammatory response (120, 121). 
Notably, betaine may facilitate adrenaline synthesis by affecting 
phenylethanolamine N-methyltransferase, thereby indirectly increasing 
the alcohol metabolism rate and preventing excessive alcohol 
concentrations (122). The study demonstrated that betaine protects the 
liver in a dose-dependent manner, with 0.5% betaine in feed sufficient 
to raise SAM levels that prevent fatty liver disease (114). However, the 
effects of betaine are selective. For example, in certain models, it did not 
reverse carbonic anhydrase-III downregulation or reduce the expression 
of TNF-α and cluster of differentiation 14 mRNA (110, 123), indicating 
that its mechanism of action is highly specific. In summary, by 
correcting the imbalance in methyl metabolism, betaine synergistically 
regulates lipid metabolism, oxidative stress, and inflammatory pathways, 
forming a multidimensional protective network against alcoholic 
liver damage.

5.3.4 Other liver damage types
Betaine protects against various types of liver damage, including 

chemical poisoning, drugs, liver fibrosis, and cirrhosis. Its efficacy is 
achieved through various mechanisms, including antioxidant, anti-
inflammatory, metabolic, and epigenetic regulation.

5.3.4.1 Chemical and drug-induced liver damage
In liver injury models induced by chemical poisons and drugs, 

such as carbon tetrachloride, diethylnitrosamine, acetaminophen, 
thioacetamide, and cisplatin, betaine exerts core protective effects 
primarily by enhancing antioxidant defense and inhibiting 
inflammation. Betaine can significantly increase the activity of 
antioxidant enzymes [SOD and glutathione peroxidase (GPx)], restore 

FIGURE 5

Mechanisms underlying the protective effects of betaine in various liver diseases and injury. Betaine works by improving the gut dysbiosis, increasing 
short-chain fatty acid levels, reshaping the SAM/SAH ratio, enhancing antioxidant defense, and inhibiting apoptosis (A); regulating the expression of 
genes such as PGC-1α through m6A methylation of DNA (B); downregulating the levels of genes and proteins related to lipogenesis and upregulating 
the levels of genes and proteins related to fatty acid oxidation (FAS, ACC, SREBP-1c↓; CPT-1PPARα↑) (C); and participating in the regulation of 
molecular signaling pathways related to AMPK, Akt/mTOR, endoplasmic reticulum stress, and inflammation (D), thereby preventing and treating liver 
damage caused by NAFLD, AFLD, liver fibrosis/cirrhosis, and chemical/drug liver damage.
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GSH levels, reduce MDA content, inhibit the expression of primary 
inflammatory factors (NF-κB, TNF-α, and COX-2), and inhibit lipid 
deposition and degeneration (124–131) (Figure 5D). Additionally, 
betaine can protect mitochondrial function by protecting complex II 
activity and inhibiting apoptosis by inhibiting caspase-3, thereby 
maintaining hepatocyte structural integrity (21, 126, 131, 132). 
Betaine may play a protective role against niacin-induced 
hepatotoxicity by preventing SAM depletion (133).

5.3.4.2 Liver fibrosis and cirrhosis
In a liver fibrosis model induced by a high-fat diet combined with 

carbon tetrachloride, bile duct ligation, ethanol, and other factors, 
betaine exerted its effects through the aforementioned antioxidant and 
anti-inflammatory mechanisms and directly targeted the antifibrosis 
pathway. Betaine can effectively delay the progression of fibrosis by 
downregulating TGF-β1, alpha-smooth muscle actin (α-SMA), and 
collagen type I alpha 1 chain (COL1A1), regulating the balance of 
matrix metalloproteinase-2 and tissue inhibitor of 
metalloproteinase-1/-2, and inhibiting the activation of hepatic stellate 
cells (23, 125, 134–136). Clinical observations have demonstrated that 
plasma betaine levels in patients with cirrhosis are associated with 
disease severity and decrease after liver transplantation, indicating 
their association with disease progression (137).

5.3.4.3 Special types of liver injury caused by radiation, 
ischemia-reperfusion, and viral hepatitis

In radiation-induced liver injury and liver ischemia-reperfusion 
models, betaine plays a protective role mainly via its strong antioxidant 
activity, delaying tissue damage (124, 138). In chronic hepatitis C, 
betaine exhibits immunomodulatory potential and enhances 
interferon α antiviral signaling by restoring signal transducer and 
activator of transcription 1 methylation (139).

5.3.4.4 Transgenerational programming effects and 
developmental regulation

The protective effects of betaine are characteristics of 
transgenerational epigenetic programming. Maternal betaine intake 
(rats and pigs) can programmatically alter liver metabolism, cell 
proliferation, and the developmental trajectory of offspring—and even 
the F2 generation—by affecting the DNA methylation pattern of the 
insulin-like growth factor (IGF) gene family (IGF-1/2) in the liver of 
the offspring and regulating the expression of glucocorticoid receptor 
signaling and lipolysis genes (adipose triglyceride lipase and hormone-
sensitive lipase) (25, 140–145).

Betaine exhibits multitarget protective effects. Its main function is 
to provide methyl groups and synergistically regulate various 
pathways—including antioxidative stress, inflammation suppression, 
metabolic homeostasis, and epigenetic programming—thereby 
forming a networked protective system. This has the potential for 
effective prevention and treatment of various liver injuries, including 
the chemical, fibrotic, and viral types.

5.4 Betaine for the prevention and 
treatment of cardiovascular disease

Existing studies on the association between betaine and 
cardiovascular health have yielded inconsistent results. Several 

large-scale, long-term follow-up studies have demonstrated no 
significant association between betaine intake and the risk of 
cardiovascular disease morbidity or mortality in the general adult 
population (146–149). A study involving 18,076 novel cardiovascular 
disease events further confirmed the lack of a significant association 
between the two diseases (148). However, betaine has demonstrated 
different effects in specific populations or disease contexts. For 
example, in the Guangdong population of China, higher dietary 
betaine intake was associated with a lower risk of cardiovascular death 
(150). In patients with ischemic stroke, betaine helped reduce the risk 
of recurrent cardiovascular events and enhanced cognitive function 
(151, 152). In African Americans, dietary betaine intake increased 
nonlinearly with the risk of coronary heart disease (153). Regarding 
biomarkers, low-dose betaine supplementation (<4 g/day) can reduce 
homocysteine levels without causing lipid abnormalities (154), but 
daily supplementation of ≥4 g may slightly increase total cholesterol 
levels (155). Betaine levels are inversely associated with blood pressure, 
particularly in women (156). At the mechanistic level, betaine may 
exert a cardioprotective effect by inhibiting oxidative stress, 
inflammation, and fibrosis by regulating the AMPK/nuclear factor 
erythroid 2-related factor 2 (Nrf2)/TGF-β signaling pathway (24), and 
enhance pulmonary hypertension and ischemia-reperfusion injury in 
animal models (Figure 6A). Additionally, the mechanism may be 
associated with the regulation of Ras homologous family member A/
Rho-associated coiled-coil-containing protein kinase pathway (157, 
158). Lower plasma betaine levels are associated with an increased risk 
of heart failure and myocardial infarction (159). In patients with 
hypertension, a U-shaped relationship was observed between serum 
betaine levels and the risk of first ischemic stroke (160). Overall, the 
effects of betaine on the cardiovascular system are heterogeneous 
across different populations and are dose-dependent. For example, 
daily supplementation of 4 g for more than 6 weeks may lead to a 
moderate increase in the levels of plasma total cholesterol (155) and 
trimethylamine oxide (161), which is detrimental to 
cardiovascular health.

5.5 Betaine for the prevention and 
treatment of kidney disease

The effects of betaine on kidney health are multifaceted across 
models and populations; however, these effects are context-dependent. 
In cats with chronic kidney disease (CKD), betaine supplementation 
enhances renal health and reverses weight loss, possibly through its 
effects on one-carbon metabolism, gut microbiota, body composition, 
and plasma metabolome (162, 163). Similarly, betaine positively 
modulated plasma and fecal metabolites in a dog model of chronic 
kidney disease (164). However, population-based studies have 
demonstrated mixed results. A study of 478 patients with CKD 
revealed that higher plasma betaine concentrations were a risk factor 
for adverse renal outcomes (165). In the context of CKD, betaine may 
also exhibit adverse effects, via multiple molecular mechanisms. For 
example, the accumulation of TMAO levels in the body promotes 
renal fibrosis, inflammation, and atherosclerosis, thereby accelerating 
the progression of CKD (166, 167); high betaine levels may lead to 
abnormal methylation of profibrotic genes (such as TGF-β and 
COL1A1), promoting renal interstitial fibrosis (168); and methylation 
cycle disorders in patients with CKD lead to homocysteine 

https://doi.org/10.3389/fnut.2025.1762908
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Xu et al.� 10.3389/fnut.2025.1762908

Frontiers in Nutrition 10 frontiersin.org

accumulation, whereas abnormal betaine metabolism may exacerbate 
reactive oxygen species production, promoting renal tubular damage 
(169). These abnormal changes are likely closely related to renal 
function, and kidney disease appears to disrupt this process (Table 1). 
However, plasma betaine levels were significantly associated with the 
estimated glomerular filtration rate and exhibited good discriminatory 
ability in distinguishing CKD states (170). In Chinese children and 
adolescents, betaine intake may reduce the risk of hyperuricemia by 
enhancing glomerular filtration (171). Mechanistically, numerous 
animal experiments have revealed the protective potential of betaine, 
whose effects are primarily reflected in combating oxidative stress, 
inhibiting inflammatory responses, and regulating primary signaling 
pathways. For example, in potassium chloride-induced hyperuricemic 
mice (172), arsenic-exposed mice (173, 174), and sodium fluoride-
induced renal injury rat models (175), betaine exerts protective effects 
by regulating urate transporters, inhibiting oxidative stress, and 
modulating the Nrf-2/heme oxygenase-1 (HO-1) signaling axis 
(Figure 6B). In various renal injury models induced by high fructose 
(176), cadmium (177), cisplatin (178), doxorubicin (179), 

isoproterenol (180), and carbon tetrachloride (181), betaine protects 
renal function through various mechanisms, such as reducing lipid 
deposition, inhibiting inflammasome activation, and inhibiting 
apoptosis. Additionally, betaine enhances renal pathological damage 
in diabetic pregnant mice (182) and thioacetamide-induced renal 
injury mouse models (183).

5.6 Betaine for the prevention and 
treatment of Alzheimer’s disease

Betaine has demonstrated multipathway protective potential in 
various experimental models of Alzheimer’s disease (AD). In 
amyloid-beta (Aβ)-induced AD rat or mouse models, betaine can 
effectively enhance cognitive dysfunction and memory impairment, 
and its effects are closely associated with increasing GSH, reducing 
oxidative markers such as MDA, and activating primary proteins 
such as SIRT1 (184–186). In a homocysteine-induced cognitive 
impairment model, an independent risk factor for AD, betaine 

FIGURE 6

Mechanisms underlying the effects of betaine in preventing and treating cardiovascular, kidney, and Alzheimer’s diseases. Betaine reduces hypertension 
and ischemia-reperfusion injury by inhibiting Ras homologous family member A/Rho-associated coiled-coil-containing protein kinase and enhances 
cardiovascular function by activating the adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2 (Nrf2)/
transforming growth factor-beta pathway, thereby reducing oxidative stress, inflammation, and fibrosis (A); reduces oxidative stress, 
neuroinflammation, and apoptosis by activating Nrf2/heme oxygenase-1, thereby enhancing glomerular function and kidney health (B); enhances 
cognition and memory by inhibiting amyloid-beta production, oxidative stress, NOD-, LRR-, and pyrin domain-containing protein 3/nuclear factor 
kappa-light-chain-enhancer of activated B cells pathway, and inflammation, and by activating protein phosphatase 2a to inhibit Tau 
hyperphosphorylation, thereby enhancing the Alzheimer’s disease (C).
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TABLE 1  Clinical studies investigating the effects of betaine in various diseases.

Model/Population Disease/Condition Intervention method Intervention dosage Mechanism (s) Adverse effects References

12 healthy males; 3 patients 

with homocystinuria
Homocystinuria Oral (anhydrous betaine powder)

Single dose 50 mg/kg; or 50 mg/

kg twice daily

Methyl donor; converts homocysteine to 

methionine via BHMT enzyme
Safe and well tolerated (13)

55 patients with biopsy-

proven NASH
NASH Oral (anhydrous betaine powder) 20 g daily for 12 months Lowers SAH; improves hepatic steatosis Minor GI upset in some (106)

13,440 ARIC study 

participants
T2D risk

Dietary intake (prospective 

cohort)

Median intake: 74.5–114.8 mg/

day

Osmoprotection; involvement in one-

carbon metabolism
N/A (observational study) (61)

1,292 patients with CAD CAD mortality
Dietary intake (prospective 

cohort)
Range: 100–400 mg/day

Lowers SAH and tHcy levels; increases 

SAM and SAM/SAH ratio
N/A (observational study) (150)

4,336 participants from the 

PREVEND study
T2D

Serum metabolite levels 

(observational)
Median plasma: 34.1 μmol/L

Regulation of lipid metabolism and insulin 

sensitivity
N/A (observational study) (58)

6,022 Iranian adults T2D
Dietary intake (prospective 

cohort)
Mean intake: ~104 mg/day

Potential epigenetic effects; homocysteine 

remethylation
N/A (observational study) (62)

2,606 adults (Tehran Lipid 

and Glucose study)
CVD

Dietary intake (prospective 

cohort)
Geometric mean: 78 mg/day

Precursor for cell membrane 

phospholipids and neurotransmitters
N/A (observational study) (146)

29,079 Japanese residents 

(Takayama study)
CVD

Dietary intake (prospective 

cohort)
Range: ~50–150 mg/day

Reduction of inflammatory markers (CRP, 

IL-6)
N/A (observational study) (147)

14,430 middle-aged adults CHD
Dietary intake (prospective 

cohort)
Mean: ~100 mg/day

Modification of DNA methylation and 

one-carbon metabolism
N/A (observational study) (149)

Type 2 diabetes patients 

(ZODIAC study)

Diabetic microvascular 

complications

Plasma betaine levels 

(observational)
Circulating levels

Inhibition of VEGF signaling and 

mesangial cell proliferation
N/A (observational study) (59)

8 patients with probable mild 

Alzheimer’s disease
AD Oral (anhydrous powder)

3 g twice daily (6 g/day) for 

24 weeks

Methyl donor; lowers serum 

homocysteine; increases brain methionine 

and SAM to delay disease progression

Diarrhea, prostatitis  

(1 patient); myocardial 

infarction (1 patient, likely 

unrelated)

(195)

97 AD patients (malnutrition 

vs. non-malnutrition)
AD; hyperhomocysteinemia Oral (diet intervention)

50, 100, and 200 μg/kg for 

1 month

Lowers Hcy; reduces tau phosphorylation; 

increases PP2Ac activity; inhibits Aβ 

accumulation; suppresses TNF-α and 

IL-1β

Not reported (200)

Ischemic stroke patients 

(nested case–control)

Recurrent stroke; cardiovascular 

events
Observational (plasma levels) N/A (baseline circulating levels)

Neurotransmitter synthesis; cell 

membrane integrity; methyl-group 

metabolism (Hcy reduction)

N/A (observational study) (151)

Acute ischemic stroke 

patients (CATIS trial)
Post-stroke cognitive impairment Observational (plasma levels) N/A (baseline circulating levels)

Inverse association with cognitive decline; 

potential neuroprotective effects via one-

carbon metabolism

N/A (observational study) (152)

(Continued)
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TABLE 1  (Continued)

Model/Population Disease/Condition Intervention method Intervention dosage Mechanism (s) Adverse effects References

531 patients with ACS Secondary MI; Heart failure; death Observational (plasma and urine) N/A (baseline circulating levels)

Betaine insufficiency linked to unfavorable 

vascular risk and metabolic syndrome 

profiles

N/A (observational study) (159)

Hypertensive patients (nested 

case–control)
First ischemic stroke Observational (serum levels) N/A (baseline circulating levels)

Serves as a methyl donor; prevents 

premature apoptosis; osmoprotection
N/A (observational study) (160)

3,903 stable cardiac patients 

undergoing angiography
MACE Observational (plasma levels) N/A (baseline circulating levels)

Betaine acts as a precursor to TMAO via 

gut microbiota; high levels are pro-

atherogenic when TMAO is elevated

N/A (observational study) (161)

Patients with moderate to 

advanced CKD
Cardiovascular and renal outcomes Observational (plasma levels) N/A (baseline circulating levels)

Interaction with renal function and gut-

microbiota metabolites (TMAO); one-

carbon cycle metabolism

N/A (observational study) (165)

521 stable subjects with CKD Chronic kidney disease; mortality Observational (plasma levels) N/A (baseline circulating levels)

Precursor for TMAO; contributes to renal 

tubulointerstitial fibrosis and progressive 

renal dysfunction

N/A (observational study) (166)

179 CKD stage 3–5 patients
Inflammation and mortality in 

CKD
Observational (plasma levels) N/A (baseline circulating levels)

Linked to GFR and markers of 

inflammation; precursor for gut-microbial 

generation of TMAO

N/A (observational study) (167)

612 ischemic stroke patients 

(CATIS trial)
PSD Observational (plasma levels) N/A (circulating plasma levels)

Methyl donor; anti-inflammatory effects; 

neuroprotective role in neuroplasticity and 

recovery

N/A (observational study) (201)

11 children with CBS or cblC 

deficiency

CBS deficiency; cblC deficiency 

(homocystinuria)
Oral (twice-daily dose)

100 mg/kg/day vs. 250 mg/kg/

day

Methyl donor for homocysteine 

remethylation via BHMT enzyme; 

chemical chaperone

GI disorders (diarrhea, 

vomiting, pain), fever, 

headache, muscular pain

(202)

29 patients with CHC CHC
Oral (combination with SAMe, 

PegIFN, Ribavirin)
6 g/day

Required for methionine generation; 

recycling of SAMe; potentiates IFNa 

signaling

Flu-like symptoms, fatigue, 

GI symptoms (diarrhea, 

pain), skin/mood issues

(203)

29 patients with chronic 

haemodialysis
ESRD; hyperhomocysteinemia Oral (with folic acid) 4 g daily for 12 weeks

Alternate methyl donor for remethylation 

of homocysteine to methionine
Not specifically detailed (204)

8 healthy white male 

volunteers

Elevated homocysteine 

(postmethionine load)

Oral (supplement or high-betaine 

meal)

~500 mg supplement or 

~517 mg meal

Major tissue osmolyte; substrate for 

BHMT to remethylate homocysteine

Indigestion and diarrhea (at 

higher pharmacologic doses)
(205)

2,568 patients with suspected 

stable angina pectoris
SAP; AMI risk Observational (plasma levels) N/A (circulating plasma levels)

Mitochondrial oxidation product of 

choline; osmolyte and methyl donor
N/A (observational study) (206)

90 patients undergoing 

coronary angiography
CAD; hyperhomocysteinemia

Observational/randomized (part 

of B-vitamin trial)

N/A (baseline/post-methionine 

load levels)

Substrate for BHMT; converts 

homocysteine to methionine; determinant 

of postmethionine load tHcy

Not reported (207)

(Continued)
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TABLE 1  (Continued)

Model/Population Disease/Condition Intervention method Intervention dosage Mechanism (s) Adverse effects References

44 patients with CAD Endothelial dysfunction; CAD Oral (betaine anhydrous) 100 mg/kg/day for 6 weeks
Homocysteine lowering via remethylation; 

testing effect on FMD
Not reported (208)

Patients with SBS Hepatopathy (hepatic steatosis) Oral (betaine anhydrous)
10 g daily (divided into 2 doses) 

for 3 months

Decreases hepatic fat; anti-inflammatory 

(reduces IL-6, TNF-α); homocysteine 

regulation

Well-tolerated; no significant 

adverse effects
(209)

5 patients with pyridoxine-

non-responsive 

homocystinuria

Homocystinuria; Osteoporosis (low 

bone density)
Oral (crossover study)

3 g twice daily (6 g/day) for 

2 years

Reduces plasma homocystine; increases 

plasma methionine
No adverse effects (210)

161 postmenopausal women
Cardiovascular risk; homocysteine 

status

Oral (choline bitartrate as betaine 

precursor)

400 mg/day or 1,100 mg/day 

choline

Choline is oxidized to betaine; betaine acts 

as a methyl donor to lower fasting tHcy
Not reported (211)

Animal models (implied 

through metabolic pathways) 

and humans

Atherosclerosis and CKD
Dietary intake/metabolism as a 

precursor to TMAO

Not specified (noted as a “lesser 

degree” contributor to TMAO 

compared to choline or 

L-carnitine)

Choline oxidation produces high levels of 

betaine, which is converted into TMAO by 

gut microbiota, increasing the risk of CKD

Increased TMAO leading to 

renal tubulointerstitial 

fibrosis and dysfunction

(166)

ACS, acute coronary syndrome; AD, Alzheimer’s disease; ARIC, atherosclerosis risk in communities; CAD, coronary artery disease; CATIS, China Antihypertensive Trial in Acute Ischemic Stroke; CHC, chronic hepatitis C; CHD, coronary heart disease; CKD, chronic 
kidney disease; CVD, cardiovascular disease; ESRD, end-stage renal disease; eGFR, estimated glomerular filtration rate; FMD, flow-mediated dilatation; Hcy, homocysteine; NASH, nonalcoholic steatohepatitis; PREVEND, prevention of renal and vascular end-stage 
disease; PSD, poststroke depression; SAH, S-adenosylhomocysteine; SAMe, S-adenosyl-methionine; SAP, stable angina pectoris; SBS, short bowel syndrome; T2D, type 2 diabetes; TMAO, trimethylamine-N-oxide; UACR, urine albumin-to-creatinine ratio; UAE, 
urinary albumin excretion.
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alleviated cognitive impairment by inhibiting the NLRP3/caspase-1/
GSDMD pathway in an m6A-YTHDF2-dependent manner, thereby 
suppressing microglial pyroptosis (187). At the molecular level, 
betaine regulates the processing of amyloid precursor proteins by 
enhancing α-secretase activity and reducing β-secretase activity, 
thereby reducing Aβ production (188). Additionally, it activates 
PP2A to reduce Tau protein hyperphosphorylation (189) and 
inhibits the nucleotide-binding oligomerization domain-, leucine-
rich repeat- and pyrin domain-containing protein 3/NF-κB 
signaling pathway to alleviate neuroinflammation (190) (Figure 6C). 
Moreover, betaine exerts neuroprotective effects by inhibiting the 
expression of ferroptosis-related factors (acyl-CoA synthetase long-
chain family member 4 and transferrin receptor 1) (191). 
Furthermore, in 3xTg transgenic AD model mice and 
Caenorhabditis elegans models, betaine enhanced synaptic function 
and alleviated Aβ toxicity (192, 193). In clinical research, a meta-
analysis of 7,009 patients with AD indicated that betaine enhanced 
the cognitive function and improved the quality of life (194). 
However, the results of small-scale human trials remain unclear and 
should be verified with larger samples (195). In summary, betaine 
may play a significant role in the prevention and intervention of AD 
through various mechanisms, such as anti-oxidation, anti-
inflammation, regulation of Aβ and Tau pathology, and inhibition 
of ferroptosis.

6 Challenges for the use of betaine in 
disease prevention and treatment

Based on the current research on betaine use for the prevention 
and treatment of chronic diseases (196), the vast majority of 
experimental results from basic research have been positive. However, 
disease enhancement has rarely been observed in clinical studies. This 
may be because numerous factors affect the population and studies 
primarily rely on semi-quantitative questionnaires that limit the ability 
to accurately assess intake. Additionally, betaine is easily absorbed by 
the human body and its intake is not problematic. Betaine primarily 
acts as a methyl donor; however, folic acid, vitamin B12, and choline 
can also serve this function, which may diminish its unique molecular 
biological role. The mechanisms of betaine metabolism likely involve 
methylation, gut microbiota, inflammation, oxidative stress, and 
apoptosis. Owing to its complexity, betaine may be more suitable for 
dietary supplementation rather than for targeted drug development. 
High betaine intake may cause gastrointestinal discomfort, and the 
long-term safety of high-dose use remains limited, particularly in 
patients with chronic diseases or in the elderly. During normal 
supplementation, a daily intake of no more than 6 mg/(kg·bw) of 
betaine is considered safe (197). High doses (≥3 g/single dose) can 
cause nausea, diarrhea, and gastrointestinal discomfort, possibly due 
to increased intestinal water secretion caused by high osmotic 
pressure. These dose-dependent discomfort symptoms can be 
alleviated by taking the medication in divided doses or with food. 
Betaine should be used with caution in individuals with CKD and in 
those requiring cholesterol control, as it may exacerbate disease 
progression (166, 198). Current research also indicates that betaine 
has extremely low toxicity and is not heritable (197, 199). Therefore, 
large-scale clinical research and deeper mechanistic exploration are 

required to supplement its specific effects, supplementary dosage, and 
disease intervention time to maximize its role in preventing and 
treating chronic diseases.

7 Conclusion

As a primary methyl donor and osmotic pressure regulator, 
betaine plays a crucial role in the prevention and treatment of various 
chronic diseases (obesity, diabetes, metabolism-related fatty liver 
disease, CKD, and Alzheimer’s disease). Its mechanism of action 
primarily involves inhibiting the inflammatory response, reducing 
oxidative stress, resisting apoptosis, and regulating gene expression 
through epigenetic modifications (DNA methylation). Additionally, 
betaine can significantly alleviate tissue damage and disease processes 
caused by drug toxicity, viral infection, and chemical exposure. 
Although preclinical research data on betaine are encouraging, the 
conclusions drawn from population epidemiological surveys and 
randomized controlled clinical trials are inconsistent, and most 
studies have failed to its replicate significant protective effects. This 
indicates that the therapeutic efficacy of betaine may be affected by 
various complex factors. However, in this article, we did not compare 
all the benefits of betaine and exercise and only analyzed the main 
mechanisms by which exercise affects disease prevention and 
treatment. Furthermore, it lacks a comprehensive and detailed analysis 
of the molecular mechanisms of betaine, as well as quantitative data 
presentation. Future research should introduce advanced technologies, 
such as multiomics integrated analysis to systematically clarify the 
precise targets and core regulatory networks of betaine in the human 
body, reveal the reasons for its variable effects in different individuals, 
and identify the subgroups most likely to benefit. Therefore, these 
in-depth studies will provide primary evidence for determining 
whether betaine has the potential to be a clinically effective nutritional 
supplement or therapeutic drug and guide its precise application.
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