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Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) has rapidly
become the leading cause of chronic liver disease and cirrhosis worldwide, driven
by the global surge in metabolic disorders such as obesity, diabetes, hypertension,
and dyslipidemia. In parallel, heart failure with preserved ejection fraction (HF-
pPEF) has surpassed heart failure with reduced ejection fraction (HFrEF) as the
predominant form of heart failure, particularly in individuals with metabolic
comorbidities. Mounting evidence points to a significant overlap in the patho-
physiological underpinnings of MASLD and HFpEF, with metabolic dysfunction
serving as a common foundation. This review synthesizes current knowledge on
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the mechanistic links between MASLD and HFpEF, examining metabolic, inflammatory, and fibrotic pathways. We
also explore the clinical implications of this association, including diagnostic considerations and therapeutic
targets. Shared risk factors and inflammatory pathways have highlighted a strong bidirectional association
between MASLD and cardiovascular diseases, particularly HFpEF. Significantly, the degree of hepatic fibrosis in
MASLD correlates with HFpEF prognosis and severity, emphasizing the systemic nature of these conditions.
Emerging pharmacological and lifestyle-based interventions aimed at managing both conditions underscore the
importance of integrated, multidisciplinary care in improving long-term outcomes.

Key Words: Metabolic dysfunction-associated steatotic liver disease; Heart failure with preserved ejection fraction; Diabetes
mellitus; Obesity; Hypertension; Dyslipidemia; Obstructive sleep apnea; Inflammation; Metabolic dysfunction

©The Author(s) 2026. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The ever-changing terminology of metabolic dysfunction-associated steatotic liver disease (MASLD) to encompass
metabolic dysfunction truly reflects its systemic impact beyond the liver. Cardiovascular diseases remain the leading cause
of MASLD-related morbidity and mortality. Amongst the various cardiovascular diseases linked to MASLD, heart failure
with preserved ejection fraction (HFpEF) is most closely related to MASLD, sharing a pathophysiologic foundation with
MASLD and rooted in common metabolic risk factors. This review explores the intertwined mechanisms linking MASLD
and HFpEF, highlighting their clinical convergence and therapeutic relevance.
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INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease (MASLD) has been on the rise and has now become one of the
leading causes of liver transplantation in the United States. The new nomenclature requires at least one of the five
metabolic risk factors along with liver steatosis to diagnose MASLD and metabolic-associated steatohepatitis (MASH).
These include diabetes, hypertension, hypertriglyceridemia, and low HDL levels[1,2]. The shared risk factors that can
predispose patients to MASLD and MASH have been implicated in the development of cardiovascular disease (CVD). As
a result, there have been studies aiming to estimate whether MASLD is a risk factor for CVD development. In a study by
Simon et al[3], the risk of developing cardiovascular outcomes was significantly higher among patients with MASLD. The
risk was independent of the common cardiometabolic risk factors shared by MASLD and CVD. Studies by Mantovani et
al[4] and Simon et al[3] reported that MASLD was associated with an increased risk of developing CVD, independent of
common cardiometabolic risk factors. In both studies, the risk was progressively higher in patients with non-cirrhotic
fibrosis and cirrhosis[4]. CVD has also been reported to be the leading cause of mortality among patients with MASLD. A
systematic review by Younossi et al[5] reported the all-cause mortality to be 12.6 per 1000 person-years. In their analysis,
cardiac-specific mortality was noted to be 4.2 per 1000 person-years, while chronic liver disease-specific mortality was
0.92 per 1000 persons.

The common CVDs noted among patients with MASH are atherosclerosis, cardiomyopathy, arrhythmias, and heart
failure, especially heart failure with preserved ejection[5]. There is a well-established bidirectional relationship between
liver disease and heart failure. Heart failure can lead to congestive hepatopathy, while the presence of advanced fibrosis
can result in cirrhotic cardiomyopathy. A recent 7-year cohort study found that MASLD was associated with diastolic
dysfunction independent of other risk factors. A meta-analysis has also supported these findings[6]. Studies have also
reported diastolic dysfunction to be related to the degree of liver fibrosis[7,8]. As there is new emerging evidence that
suggests that the presence of MASLD/MASH, even without advanced fibrosis, can increase the risk of developing heart
failure with preserved ejection fraction (HFpEF), our article aims to review the current epidemiology, pathogenesis,
cellular mechanisms, as well as the impact of various therapies on MASLD on HFpEF.

Female sex hormones are well known to not only protect against CVD in pre-menopausal females but also contribute
to improved adipose tissue function and preventing its systemic deposition.

EPIDEMIOLOGY OF MASLD IN HFPEF

Prior longitudinal studies and a meta-analysis have found that cardiac dysfunction consistent with HFpEF is commonly
seen in MASLD patients[9]. Independent associations between MASLD and structural cardiac changes have been
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observed, including left atrial (LA) size, left ventricular hypertrophy (LVH), and strain[10-12]. Furthermore, biological sex
plays a role in the association of MASLD and HFpEF due to the protective role of estrogen in CVD and difference in
ectopic adipose deposition trends[13]. Echocardiography in MASLD patients has shown impaired LV relaxation and
diastolic dysfunction. Doppler imaging in these patients has shown lower E wave and e’ velocity, decreased E/a ratio,
and increased E/e.” Overall, this suggests that MASLD patients tend to have higher LV filling pressure even after
adjusting for comorbidities such as hypertension, diabetes, and obesity[14]. However, another longitudinal study found
that the association of MASLD with LV hypertrophy (LVH) was not significant after controlling for obesity[11]. A
magnetic resonance imaging (MRI)-based study tested for correlates of diastolic dysfunction and found that it was
associated with hepatic steatosis and visceral obesity despite not showing a significant relation with myocardial trigly-
cerides[15].

Multiple studies have aimed to establish the relationship between MASLD and heart failure. A recent meta-analysis by
Qiu et al[16] examining 6 cohort studies containing 10979967 participants reported patients with MASLD at a 36% higher
risk of incident HF than patients without MASLD. The increased risk was also noted among patients with mild steatosis.
Regarding the risk of HFpEF among patients with MASLD, a study by Fudim et al[17] evaluating 870535 Medicare benefi-
ciaries reported the presence of MASLD to be associated with a significantly increased risk of developing new onset HF.
Their study reported a higher risk of developing HFpEF compared to the risk of HFrEF.

Single-center studies provide information regarding the prevalence of fatty liver among patients with HFpEF. In a
study by Miller et al[18] evaluating 181 patients with HFpEF, 49 (27%) patients had MASLD. Twelve patients had imaging
results consistent with cirrhosis. Notably, only 96 of the patients had abdominal imaging in the study, and among these
patients, the prevalence of MASLD and cirrhosis was 50% and 11.5%, respectively. When including patients who had
imaging or NFS scores consistent with cirrhosis, the prevalence was noted to be 48.6%. Their study also indicated that
patients with fatty liver on imaging had more severe heart failure. Another survey by Wegermann et al[19] indicated that
among 89 patients with biopsy-proven MASLD, the prevalence of HFpEF and diastolic dysfunction was 41.9% and 47.2%,
respectively. A study by Minhas et al[20] utilizing United States national hospitalization data noted that nonalcoholic
fatty liver disease (NAFLD)'s prevalence was 2.3% among patients with HFpEF. This study might underestimate the
prevalence as it was based on International Classification of Diseases-10 codes, and information regarding more granular
data was missing. Despite this limitation, this study is of interest because MASLD was associated with an increased risk
of in-hospital complications among patients with heart failure with preserved ejection fraction[20]. Studies have
established that the presence and extent of fibrosis in MASLD correlates with the prognosis of HFpEF[9,19,21,22]. More
severe fibrosis, i.e., F3-F4, has shown associations with worse cardiovascular outcomes[23]. Worse diastolic function and
greater LA diameter have been observed in MASLD patients with advanced fibrosis[18]. The association has remained
true for patients hospitalized with decompensated HFpEF[24]. The significant effect of MASH on HFpEF prognosis
supports the conjecture that the two diseases might progress via similar pathogenetic pathways. Thus, it is essential to
understand the shared risk factors and the underlying pathophysiological mechanisms responsible for developing these
conditions.

PATHOPHYSIOLOGICAL MECHANISMS OF HFPEF IN MASLD

HFpEEF is characterized by diastolic and systolic reserve abnormalities, pulmonary hypertension, endothelial dysfunction,
and reserve failure[25]. Initially, HFpEF was studied as a unified syndrome; however, due to the differences in the
underlying mechanisms, several subtypes of this disease have since been discussed. A previous study by Salah et al[9]
reported that three significant phenotypes among patients with MASLD include obstructive, metabolic, and cirrhosis
HFpEF phenotypes. Understanding these phenotypes is beneficial, as this can provide insight into the various ways by
which MASLD/MASH can predispose to HFpEF development. Figure 1 highlights the pathophysiological mechanism of
HFpEF development in MASLD.

Obstructive HFpEF phenotypes

The liver is a major metabolic organ; about 25% of blood volume passes through the liver before reaching the heart. In the
early stages of MASLD, there is an increased resistance in the hepatic sinusoids, which may impede venous return. As
fibrosis progresses, the resistance in the hepatic sinusoids may increase, further impeding the venous return[26]. Fibrosis
may reduce preload, which impairs the peak oxygen consumption observed among patients with MASLD[27].

Metabolic HFpEF phenotype

Several metabolic and inflammatory abnormalities, such as insulin resistance (IR), visceral adiposity, endothelial
dysfunction, and dyslipidemia, have been linked to the development of HFpEF and MASLD. It has been hypothesized
that increased inflammation in patients with MASLD may predispose them to the development of metabolic HFpEF[28].
As the history of the disease progresses from steatosis to inflammation and advanced fibrosis, studies have noted an
increase in the production of increased systemic proinflammatory markers, such as interleukin (IL)-1, IL-6, tumor necrosis
factor-alpha (TNF-a), and chemokine ligand 3[29]. The increase in systemic inflammation can result in endothelial
dysfunction, thus predisposing the patient to HFpEF[30].

Osteopontin has been suggested to play an essential role in inflammation, extracellular deposition, and fibrosis. Studies
have reported osteopontin to be increased in MASLD, especially in those with advanced fibrosis[31]. It has been
hypothesized that increased osteopontin may directly or indirectly increase the risk of HFpEF. A study reported that
increased osteopontin levels among patients with HFpEF might predispose them to higher severity of HF symptoms[32].
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Figure 1 The pathophysiological mechanism of development of heart failure with preserved ejection fraction in metabolic dysfunction-

associated liver disease. HFpEF: Heart failure with preserved ejection fraction; MASLD: Metabolic-dysfunction associated liver disease; A-V shunt:
Arteriovenous shunt; BCAA: Branched-chain amino acid; MASH: Metabolic-associated steatohepatitis.
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Other markers of inflammation, such as asymmetrical dimethylarginine and homocysteine levels, are increased in
patients with MASLD. These markers can enhance oxidative stress and platelet dysfunction[33].

Circulating branched-chain amino acid (BCAA) levels have also been increased among patients with MASLD.
Increased BCAA exposure may activate cardiac protein synthesis, resulting in cardiac structural changes[34]. The
presence of MASLD can also result in cardiac metabolic remodeling, which may even precede the structural remodeling
seen in the advanced stages of the disease[35]. A previous study of 55 individuals noted a correlation between the
presence of fat in the liver and myocardial IR[36]. Another study reported increased epicardial fat among patients with
hepatic steatosis[35].

Cirrhotic HFpEF

An additional HFpEF phenotype has been described among patients with advanced cirrhosis. Portal hypertension, a
complication of cirrhosis, leads to the development of portosystemic shunts[36,37]. These shunts may increase pulmonary
flow and result in the transit of vasoactive mediators from splanchnic circulation to the pulmonary system. This may
result in the remodeling of pulmonary vasculature and pulmonary hypertension[38]. It has been suggested that micro-
shunts may develop earlier during MASLD, leading to hemodynamic changes[39].

Patients with cirrhosis can also develop A-V shunts in the pulmonary and peripheral circulation[39]. The hemodyna-
mic changes among these patients can result in the development of high-cardiac output heart failure. These patients can
also not increase their cardiac output in response to exercise. Furthermore, patients with cirrhosis are likely to have
anemia, which can predispose the patient to high-output heart failure[40].

SHARED RISK FACTORS OF HFPEF IN MASLD

The five prominent risk factors that play a crucial role in the pathogenesis of both MASLD and HFpEF are obesity
(visceral adiposity), diabetes mellitus, hypertension, hyperlipidemia, and obstructive sleep apnea (OSA) (Figure 2).
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Figure 2 Complex interplay of risk factors and their effect on metabolic dysfunction-associated liver disease pathogenesis and heart
failure with preserved ejection fraction. HFpEF: Heart failure with preserved ejection fraction; MASLD: Metabolic-dysfunction associated liver disease; MASH:
Metabolic-dysfunction associated steatohepatitis; A-V shunt: Arteriovenous shunt; OSA: Obstructive sleep apnea.

DIABETES MELLITUS

Type 2 diabetes mellitus (T2DM) increases both the risk and the morbidity associated with HFpEF and diabetic cardiomy-
opathy, conditions characterized by myocardial alterations that occur independently of hypertension and coronary artery
disease. This association is well established[25,41-43]. The effects on the myocardium include hypertrophy, stiffness, and
interstitial fibrosis, leading to diastolic compromise[44,45]. It is reported that up to 90% of T2DM patients develop
MASLD, and MASLD is thrice as common in people with T2DM than those without[46]. Furthermore, T2DM is
associated with obesity, indicative of a positive energy balance that takes a considerable toll on the liver, the main organ
responsible for metabolism[46]. Fatty acid deposition in the liver does not end with steatosis; the high levels of circulating
FAs also induce a pro-inflammatory state. Intermediates generated during lipid metabolism, such as ceramides and
diacylglycerols (DAG), are lipotoxic and activate Kuppfer cells, which produce cytokines including IL-6 and TNF-a.
These signals further recruit stellate cells, promoting fibrosis and perpetuating a vicious cycle between fatty liver disease
and T2DM[47]. Adiponectin reduces Toll-like receptor four signaling, reduces the production of TNF-a, monocyte
chemotactic protein-1, and IL-6, and increases the generation of anti-inflammatory IL-10, thereby suppressing inflam-
matory pathways[48].

Various mechanisms have been proposed to explain the pathophysiology of HFpEF in T2DM. IR in T2DM impairs
endothelial nitric oxide (NO) generation. Reduced NO and lower cGMP-PKG signaling activity impair vasodilation and
make arteries and cardiomyocytes stiffer[49]. HFpEF patients are commonly plagued by endothelial dysfunction.
Vascular stiffness impairs diastolic reserve, contributing to ventricular vascular uncoupling, which is almost ubiquitous
in HFpEF[50]. Arterial stiffness affects preload and afterload, destabilizing stroke volume and blood pressure in HFpEF
patients. Hyperglycemia in T2DM leads to the deposition of advanced glycation end-products (AGEs), resulting in
concentric LV remodeling, wall stiffness, and slow LV relaxation[25,46]. AGEs promote inflammatory damage resulting
in cell death[51]. Inappropriate protein glycosylation in the myocardium leads to interstitial fibrosis, worse compliance,
and HFpEF[52]. The ensuing lipid toxicity, TG deposition, microvascular damage, endothelial injury, and coronary
circulatory compromise culminate in diastolic function[43,53]. Epicardial fat deposition puts mechanical stress on the
pericardium, causing diastolic dysfunction[52]. Similarly, elevated lipid levels affect the liver. T2DM patients exhibit IR,
leading to increased peripheral fat breakdown and entry of free fatty acids into the liver[54]. Paradoxically, lipogenesis
can also increase IR, conceivably attributable to ER stress and mammalian target of rapamycin (mTOR) activation.
Downstream lipogenesis enzymes are activated, increasing fatty acid production[55]. While fatty acid synthesis is
increased, beta-oxidation is impaired due to IR, culminating in increased steatosis[48]. Figure 3 highlights the critical
accessory genetic and cellular association mechanisms between T2DM, MASLD, and HFpEF.
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Accessory genetic and cellular mechanisms of association between T2DM MASLD and HFpEF

PNPLA3 One of the earliest genetic markers to be associated with MASLD. Associated with increased hepatic fat
E167K variant TM6SF2 Determines TG content and lobular inflammation. Ultimately modulates hepatic and adipose insulin resistance
MBOAT?7 rs641738 variant Promotes obesity and MASLD and insulin resistance. Increases risk of progression to HCC in fibrosis
PI3K, ERK-dependent pathway Insulin resistance and hyperglycemia directly activate hepatic stellate cells
TGF-B1 Pro-fibrotic cytokine. Animal studies of obese rats with IR showed higher TGF-81 levels
‘ MMP 9 Increased by binding of IGF1 to IGF1 receptor in stellate cells leading to fibrosis
‘ MMP2 Hyperglycemia mediated activation of LX-2 cells leads to decreased degradation of collagen 1 in ER
PPARy Affected in T2DM, which can interfere with mitochondrial beta-oxidation
IRS proteins Produce inflammatory and molecular level changes based on polymorphism

CKD, HF, and T2DM form a vicious triad. CKD impairs sodium excretion and creates a proinflammatory
environment, which worsens HFpEF. Higher central venous pressure and low renal perfusion and in turn

@ k) ' worsens kidney function

‘ Decreased NAD+/NADH ratio ‘ Lack of NAD+ decreases oxidation, impairs metabolism and leads to cardiac hypertrophy

Calcium/calmodulin

dependent protein kinases T2DM acts on calcium/calmodulin dependent protein kinases, leading to defective excitation

contraction coupling. Interferes with disinhibition of sarcoplasmic/endoplasmic reticulum calcium
ATPase 2 (SERCA2) suppresses relaxation in early diastole

Figure 3 Accessory genetic and cellular association mechanisms between type 2 diabetes mellitus, metabolic dysfunction-associated
liver disease and heart failure with preserved ejection fraction. ER: Endoplasmic reticulum; IGF1: Insulin-like growth factor 1; IRS: Insulin receptor
substrate; MBOAT7: Membrane bound O-acyltransferase domain containing 7; MMP 2: Matrix metalloproteinase 2; MMP 9: Matrix metalloproteinase 9; PI3K/AKT:
Phosphatidylinositol 3-kinase protein kinase B; PPARy: Peroxisome proliferator-activated receptors; TGF: Tumor growth factor; TG: Triglycerides; TM6SF2:
Transmembrane 6 superfamily member 2 gene; CKD: Chronic kidney disease; NAD+/NADH: Nicotinamide adenine dinucleotide+/hydrogen; T2DM: Type 2 diabetes
mellitus.

OBESITY

Obesity contributes to both HFpEF and MASLD. Obesity-driven increase in de novo lipogenesis propagates HFpEF
primarily by creating a pro-inflammatory state and deposition of epicardial fat[52,56-58]. Obesity and weight gain
propagate diastolic dysfunction attributed to reduced systolic reserve, and visceral adipose tissue exhibits a firmer
linkage with concentric remodeling[59,60]. The role of epicardial adipose tissue, which is strongly correlated with body
mass index (BMI), in HFpEF has been well studied and involves both mechanical and inflammatory effects[61]. Epicardial
fat increases pulmonary capillary wedge pressure (PCWP) at rest by uncoupling LV filling pressure (PCWP) and LV pre-
load (end-diastolic volume)[62]. It raises intracavitary pressure, underestimating brain natriuretic peptide (BNP) levels,
and contributes to counterproductive interactions between the heart and pericardium, creating a diagnostic conundrum
[63]. Additionally, epicardial fat contributes to inflammation by increasing the secretion of IL-1p, IL-6, and TNF-aq,
contributing to cardiac muscle mitochondrial dysfunction[64]. Meanwhile, anti-inflammatory cytokines like adiponectin
are reduced in obesity. Higher levels of epicardial adipose tissue in HFpEF have been associated with worse hemody-
namics, poor right ventricle-pulmonary artery coupling, LV fibrosis, decreased exercise capacity, and higher hospital-
ization and mortality rates[61]. Lipotoxicity does not spare the myocardium. As fatty acids increase in circulation, they
are increasingly taken up by the myocardium. This leads to higher levels of long-chain fatty acyl CoA intracellularly and
higher synthesis of ceramides, triacylglycerol, and DAG[65], When the heart relies more on adipose than glucose to fulfill
its energy needs, it shifts towards increased Flavin adenine dinucleotide hydride-2/nicotinamide adenine dinucleotide
hydrogen ratio, less efficient energy generation, and greater production of reactive oxygen radicals[56]. While the energy
production using fat is less efficient, the energy demand of the adipose-riddled myocardium is higher. This is proposed to
contribute to HFpEF because impaired ATP metabolism initially affects the sarcoplasmic reticular calcium ATPase to
lower cytosolic Ca** during diastole, thereby interfering with relaxation[57,66].

Similarly, obesity contributes to the development of hepatic steatosis, as well as its progression to hepatitis and
cirrhosis[67]. Furthermore, hepatic steatosis has been demonstrated as a risk factor for ischemic heart disease in mouse
models[68]. It is theorized that when the level of circulating free fatty acids is high enough to overwhelm adipose tissue,
hepatocytes must take over and store the excessive triglycerides[69]. If the patient has concurrent T2DM and IR, increased
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lipolysis further propagates this effect[69]. Both lipotoxicity and glucotoxicity contribute to obesity-related MASH.
Insulin-resistant adipocytes release excessive free fatty acids, promoting inflammation and hepatic lipid deposition.
Meanwhile, hepatocytes are unable to dispose of the accumulated fat, resulting in hepatic steatosis[70]. Lipid-laden
hepatocytes initiate a pro-inflammatory arc, activating Kupffer, dendritic, and hepatic stellate cells. Neutrophils, T-
lymphocytes, and macrophages further invade the liver[71]. The inflammatory cascade attempts to heal injured
hepatocytes by recruiting stellate cells, activated endothelial cells, and myofibroblasts[72]. However, the injury tends to
overwhelm the healing capacity, and the inflammatory process culminates in scarring and even neoplasia[73].
Additionally, animal models have demonstrated associations between cardiac steatosis and transcription factor Forkhead
box protein O1,109, which has recently been designated a cellular mechanism involved in HFpEF[74].

Meanwhile, obesity disrupts the balanced adipokine profile seen in healthy individuals. Adipose hypertrophy
promotes the production of pro-inflammatory cytokines[75]. While some adipokines, such as adiponectin and obestatin,
have protective effects on the liver, others, including TNF-a, IL-6, chemerin, retinol-binding protein-4, and resistin,
exacerbate steatosis and hepatitis[75]. Adiponectin exhibits anti-inflammatory effects by decreasing pro-inflammatory
and increasing anti-inflammatory cytokines. Patients with hepatic steatosis show lower adiponectin levels than healthy
controls, while those with steatohepatitis show even lower levels. Counterintuitively, patients who have progressed to
cirrhosis display higher levels of adiponectin, which could represent impaired clearance or an attempt to salvage the
hepatic injury[76,77]. Figure 4 depicts the vital pathophysiological mechanisms by which obesity/hyperlipidemia
contributes to the risk of developing MASLD and HFpEF.

HYPERTENSION

Another common risk factor between HFpEF and MASLD is hypertension. Hypertension is a well-known risk factor for
HF development, including HFpEF[77]. The rise in blood pressure from an ideal baseline is proportional to LVH, even
starting from pre-hypertensive range pressures[78]. In hypertensive patients, the LV must constantly pump against an
increased afterload. In line with Laplace’s Law, the increased work causes LV to undergo pathological hypertrophy and
fibrosis, contributing significantly to diastolic dysfunction. Hypertensive patients who develop LVH are at high risk of
developing HF in the future. A study demonstrated that every 1% increase in LV mass above baseline was associated
with a 1% higher risk of HF[78].

MASLD has been reported to be present in 30% of hypertensive patients[79,80]. Recent studies have suggested a
bidirectional relationship between the two. While the presence and value of hypertension have been shown to predict
MASLD, the presence of MASLD can also serve as a predictor for hypertension[81]. Additionally, concomitant
hypertension is associated with greater odds of MASLD progression to fibrosis[82]. Even in normotensive patients, higher
BP can predict hepatic fibrosis[83]. A cohort study of Nagasaki nuclear bomb survivors found that hypertension
predicted the development of MASLD over time[84]. A study in China found that hypertension was a significant factor in
predicting MASLD, though less than obesity and dyslipidemia[84]. One of the explanations for this correlation is based
on the Renin Angiotensin Activating System (RAAS). Animal models have helped confirm the role of RAAS in
developing both hepatic fibrosis and hypertension[85]. Specific mutations in angiotensinogen and its receptors have been
associated with MASLDI82].

HYPERLIPIDEMIA

Lipotoxicity has undoubtedly been implicated in HFpEF pathogenesis[86]. In HFpEF, increased fatty acid oxidation leads
to greater cardiac uptake of fatty acids and myocardial lipid deposition[87,88]. A cardiac MRI study found 2.3 times
higher lipid content in the myocardium compared to controls[89]. Inactivation of adipose triglyceride lipase also reduces
lipolysis, increases lipid deposits in the heart, and worsens diastolic function[65]. Excessive acyl CoA synthase activity
increases triglyceride accumulation and is associated with concentric LVH[65]. Toxicity is likely a consequence of DAGs
and ceramides than triglycerides. Activating DAG kinases that decrease DAG levels has been associated with improved
cardiac function[90]. Inhibiting ceramide synthesis has also led to improvements in cardiac activity, as seen in imaging
[91]. In mice that lack malonyl-CoA decarboxylase, a fatty diet did not lead to cardiac dysfunction, possibly due to low
levels of acylcarnitines, i.e. toxic lipid intermediaries[92].

DAGs and ceramides upregulate NADPH oxidase and form reactive oxygen species (ROS). One of the mechanisms of
ROS-induced damage is NO depletion. In HFpEF, myocardial tissue shows increased nitrotyrosine staining, indicating
diversion of NO toward peroxynitrite formation. The resulting decrease in NO availability likely contributes to diastolic
dysfunction[93]. ROS also acts on the ryanodine receptor to increase calcium release, which could contribute to increased
passive cardiac muscle tension[94]. ROS can also activate pro-fibrotic pathways such as NF-xB and MAPK][95]. Lipotoxic
effects on the heart can induce mitochondrial abnormalities, including mitochondrial uncoupling[96]. Overall,
multimodal pathogenesis links hyperlipidemia and HFpEF.

Higher triglyceride levels are also associated with MASLD, even in the non-obese population[97]. As in obesity, high
amounts of circulating lipids tend to get deposited in hepatocytes[98]. Fat deposition makes the liver more vulnerable to
inflammation-mediated injury and impairs its regenerative capacity. The effect of increased hepatocyte exposure to fatty
acids has been evaluated in in vitro models. Hepatocytes exposed to high levels of palmitate and oleate show increased
expression of FAT/CD36 and fatty acid transport protein MRI-2, leading to intracellular accumulation of DAG and
ceramides[99]. Moreover, oleate has been associated with steatosis and palmitate has been associated with apoptosis in in
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Figure 4 Pathophysiological mechanisms of obesity/hyperlipidemia on the risk of development of metabolic dysfunction-associated liver
disease and heart failure with preserved ejection fraction. DAG: Diacylglycerol; HFpEF: Heart failure with preserved ejection fraction; IL-6: Interleukin-6;
JAK: Janus kinase; LV: Left ventricle; PPAR: Peroxisome proliferator activated receptor; PUFA: Polyunsaturated fatty acid; ROS: Reactive oxygen species; TAG:
Triacylglycerol.

vitro studies[100]. Lipophosphatidylcholine (LPC) is a lipid subgroup that induces leukocyte chemotaxis. Both patients
and animal models of MASLD have shown high LPC levels. LPC is theorized to promote apoptosis by activating
pathways involving transcription factor CCAAT/enhancer-binding homologous protein. This upregulates pro-apoptotic
proteins such as p53 upregulated modulator of apoptosis. Ceramide levels are also high in MASLD patients. They interact
with TNF-a and increase ROS generation, resulting in inflammation and apoptosis[101]. They have also been associated
with IR[102].

Studies on the mechanisms of hepatocyte apoptosis in lipotoxicity have implicated both intrinsic and extrinsic
pathways. Intrinsic pathways are activated by endoplasmic reticulum (ER) stress, ROS, and altered mitochondrial
permeability. ER stress is involved in the steatosis to hepatitis progression[100]. XBP1 and eIF2a are ER stress-sensing
pathways that also regulate lipid metabolism. The change from steatosis to MASH involves upregulating pro-apoptotic
genes and downregulating ER stress pathway genes. The Fas ligand initiates extrinsic pathways[103].
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OSA

MASLD pathogenesis in OSA largely centers around chronic intermittent hypoxia (CIH)[104]. The stress of CIH leads to
the release of ROS and inflammatory mediators, which contribute to hepatic inflammation and fibrosis[105]. One factor
that mediates this effect is HIF-1a. HIF-1a is increased in OSA and MASLD through oxidative stress and mitochondrial
injury[106,107]. HIF-1a influences the release of lysyl oxidase (LOX), which plays a role in extracellular matrix protein
cross-linking and promotes fibrosis[108]. This hypothesis is supported by the finding that LOX levels are higher in
patients with hepatic fibrosis[109]. In animal models, HIF-1a deletion has been associated with reduced expression of
genes promoting lipogenesis and reduced fibrosis[110]. HIF-2 is also implicated and results in dysregulated lipid
metabolism, which leads to severe hepatic steatosis[111]. Generally, prolyl hydroxylase domain (PHD) enzymes degrade
HIFs. Hypoxia results in decreased PHD activity, enabling excessive HIF activity and consequent liver injury[112]. The
use of HIF-1a inhibitors has been observed to improve liver fibrosis[113]. Oxidative injury damages DNA, lipids, and
proteins. The resultant inflammation triggers Kupffer cells and stellate cells to promote fibrosis. Hypoxia also activates
NF-kB, increasing TNF-a and IL-6 to trigger hepatic injury[114]. The hypoxia from OSA purportedly alters intestinal
mucosal permeability, upregulates TLR-4 expression in the liver, and affects the gut microbiome, all of which play a role
in MASLD[115]. OSA impacts sleep quality, and prior studies have linked low sleep duration with MASLD[116]. This is
partially explained by the role of circadian rhythms in regulating insulin and lipid metabolism, the disturbance of which
could promote inflammation and liver disease[117].

Endothelial dysfunction also serves as a connecting link between OSA and HFpEF. OSA patients show reduced nitrite
concentrations in plasma and impaired vasodilation. ROS activate NF-kB to increase the production of C-reactive protein,
IL-6, IL-8, TNF-a, and vascular and intracellular adhesion molecules, which cause endothelial injury, atherosclerosis, and
HF. Inflammation also generates transforming growth factor-beta (TGF-B), which lays down the fibrotic matrix and
further impairs LV diastolic function[118]. ROS generation in OSA contributes to cell injury and death[119]. A systematic
review by Polecka et al[120] found that HFpEF patients with concomitant OSA showed higher BNP levels than those
without OSA[120]. Moreover, BNP levels decrease in OSA patients upon positive airway pressure treatment[121]. The
severity of acute intermittent hypoxia in OSA also correlates with diastolic compromise in HFpEF[121]. Diastolic
compromise, measured by isovolumetric relaxation time, is associated with more severe sleep-disordered breathing.
Echocardiographic assessment and LA volume index have also been used to confirm the association between OSA and
diastolic dysfunction[122]. Moderate and severe OSA show a more reliable association with poor diastolic function than
mild OSA[123]. Like BNP levels, echocardiography has been used to assess improved diastolic dysfunction after
treatment with continuous positive airway pressure in OSA patients. Overall, OSA and HFpEF share a bidirectional
relationship, and treatment of OSA can improve HFpEF[124].

MANAGEMENT

Lifestyle interventions

Lifestyle interventions play a crucial role in the management of HFpEF and MFLD. These interventions incorporate
calorie restriction, graded physical therapy, and dietary modification. Weight loss significantly impacts IR, visceral
obesity, inflammation, hypertension, and cardiovascular risk[125-128].

Weight loss leads to decreased hepatic IR and FFA levels, and an 8% weight loss is sufficient to reverse hepatic IR,
while sustained weight loss exceeding 10% reverses fibrosis and portal inflammation[129-132]. BMI correlates with
HFpEF incidence in a dose-dependent manner[133]. The benefits of weight loss in HFpEF are attributed to improved
myocardial function, microvasculature, chronic inflammation reversal, and hemodynamic status enhancement[134].

The current guidelines from American College of Cardiology, American Heart Association and European Society of
Cardiology recommend calorie restriction in combination with 150 minutes of aerobic activity per week[125-127]. This
regimen has been shown to significantly improve markers of metabolic health, such as blood pressure, hemoglobin Alec,
and insulin levels[135]. However, maintaining long-term weight loss requires higher levels of physical activity (200-300
minutes/week) as the body responds by lowering its metabolic rate to regain weight. This highlights the importance of
bariatric surgery (BS)[132,136-140].

The latest European Association for the Study of the Liver (EASL), the European Association for the Study of Diabetes
(EASD) and the European Association for the Study of Obesity (EASO) joint evidence-based guidelines recommend a
Mediterranean diet for its high of monounsaturated fatty acid and polyunsaturated fatty acid content[127,141,142]. While
both the Dietary Approaches to Stop Hypertension diet and the Mediterranean diet demonstrate efficacy in reducing
hypertension, the latter exhibits superior anti-inflammatory properties and reverses the underlying mechanisms of
obesity, whereas the former has a greater effect on lowering blood pressure[143-145]. Furthermore, the Mediterranean
diet discourages the consumption of processed or high fructose foods and sugary drinks, which contribute to the
reduction of AGEs and lower central adiposity[146-150]. A high-protein diet may benefit MASLD due to its anorexigenic
properties[151-153]. However, it is crucial to consider the protein source, as red meat consumption increases
cardiovascular risk[153].

Physical activity benefits blood pressure independent of weight loss through vasculature modulation and sympathetic
activity attenuation[138,154,155]. In conclusion, exercise in combination with a hypocaloric diet improved peak oxygen
consumption, yet only exercise has been linked with enhanced quality of life[156-158]. These findings align with current
statements by American College of Cardiology[159].
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BS

BS may facilitate calorie restriction with a goal of 7%-10% body weight reduction in line with current guidelines[160].
These include Roux-en-Y gastric bypass and Laparoscopic adjustable gastric banding[161]. In obese patients, BS is
correlated with more significant weight loss and reversal rates of T2DM compared with nonsurgical therapy[162].
Furthermore, a greater decrease in glycosylated hemoglobin and a favorable metabolic profile was observed. The
beneficial impact of BS in metabolic disease and MASLD is attributed to their effects on dietary patterns, alteration in
stomach functioning, gut absorption metrics, gut hormone release, intestinal microbial biodiversity, and bile acid
secretion. Accordingly, weight loss attributed to BS has been associated with resolution and improved liver fat content,
steatohepatitis, and fibrosis[163]. Resolution/improvement has been seen in 30%-40% of all liver fibrosis patients,
highlighting its success[164,165]. Interestingly, it is also associated with a decreased risk of hepatocellular carcinoma
(HCQO)[166]. BS decreases the risk of major adverse cardiac events and causes mortality in patients with MASLD and
obesity[167].

Furthermore, BS is robustly aligned with improved cardiac functioning and relaxation due to improvements in
hemodynamics, inflammation, and a favorable metabolic profile'®. This is attributed to improved diastolic function and
cardiac geometry. As a result, markers implicated in HFpEF, such as LA diameter, LV mass index, and LV mass, improve
in patients undergoing BS[168].

PHARMACOLOGICAL INTERVENTIONS

Metformin

Metformin is a biguanide widely used in T2DM patients because of its safety and efficacy, and it is often prescribed to
overweight patients[169]. Metformin is usually the initial therapy in diabetic patients and benefits patients with stage B
HFpEF through reversal of diastolic dysfunction, as its use is closely correlated with decreased LV mass index and
improved ejection fraction[170,171].

While EASL-EASO-EASD and American Association for the Study of Liver Diseases (AASLD) do not recommend the
use of metformin in MASLD, there are still benefits to its use in this population in terms of its effects on determinants
such as obesity, T2DM, and dyslipidemia[127,172]. Metformin use demonstrates a significant decrease in liver enzymes
and displays a modest, nonsignificant association with reduced steatosis or lobular inflammation, irrespective of diabetic
status. However, it has no effect on fibrosis[173-177].

Metformin use has a protective effect on HFpEF incidence and progression through its action on skeletal muscles, liver,
gut, heart, and vasculature[178]. Its protective effect on the heart is attributed to improved glycemic control, protection
against hyperinsulinemia, and reduction of oxidative stress by halting titin-mediated cardiac hypertrophy and action at
the eNOS pathway[179-184]. In conclusion, using metformin before the development of MASLD does not confer any
protective effects. Still, it may serve as an adjunct to lifestyle modification early in the disease course[185]. In HFpEF, the
addition of metformin to ACEi and Beta blockers in patients with HFpEF was associated with decreased mortality[186].

Peroxisome proliferator activated receptor-agonists

Peroxisome proliferator activated receptor (PPAR) agonists such as fibrates and thiazolidinediones are among the most
extensively studied in MASLD. They selectively augment the transcriptional activity of nuclear receptors engaged in
glucose and lipid metabolism in various tissues to mitigate inflammation, fibrosis, and atherosclerosis[187,188]. These
agonists are further classified into PPAR-alpha, PPAR beta/delta, and PPAR gamma. PPAR alpha inhibits hepatic
steatosis by promoting fatty acid oxidation in the liver and NF-kB inhibition-mediated anti-inflammation, while sup-
pressing hepatic stellate cells implicated in fibrosis[189-192]. Similarly, PPAR-beta/delta inhibits hepatic steatosis
through augmentation of fatty acid catabolism in the skeletal muscle and acts as an insulin sensitizer[193-195]. PPAR-
gamma is the most extensively studied of the three and is expressed in adipose tissue[187]. It ameliorates IR through
adipogenesis, downstream upregulation of adiponectin, and augmentation of insulin signaling pathways[196-199].
Furthermore, its potent anti-inflammatory activity at Kupffer cells, as well as on other signaling cascades in the liver,
reduces oxidative stress, thereby preventing atherosclerosis, hepatic steatosis, and liver damage[200-206]. Finally, PPAR-
gamma impedes fibrosis by curtailing hepatic stellate cell activity[207]. In summary, PPAR agonists present us with
multiple prospects in treating metabolic syndrome as well as MASLD, and various agents that act through specific
isoforms, dual agonism, or pan-agonism are being studied[208].

Current EASL-EASO-EASD and AASLD guidelines recommend the use of PPAR-gamma agonist Pioglitazone yet
concerning side effects, such as weight gain and fluid retention, have been obstacles in its widespread use[127,209,210].
Consistent with these efforts, newer agents such as lobeglitazone, saroglitazar, elafibranor, and lanifibranor are currently
under development.

SGLT2i

SGLT-2i acts by attenuating glucose absorption in pre-renal tubules, preventing hyperglycemia. Furthermore, it inhibits
glucose uptake in hepatocytes, which is robustly associated with antiproliferative activity across multiple hepatocellular
lines[211]. Finally, in vitro studies have demonstrated that the pleiotropic nature of these agents enables modulation of

glucose and cholesterol metabolism, suppression of inflammation, weight loss, and reversal of steatosis and fibrosis[212-
214].
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AASLD recommends using SGLT2i for NAFLD-associated cardiometabolic diseases[172]. Drugs such as dapagliflozin,
empagliflozin, and canagliflozin have been shown to decrease liver fat and are routinely used as antidiabetic agents[215].
SGLT?2i plays a significant role in inducing peripheral insulin sensitivity, upregulating beta cell mass, and reducing
oxidative stress[216-219]. SGLT2i provides more significant weight loss benefits and anti-hypertensive effects than
metformin and dipeptidyle peptidase 4 (DPP-4) inhibitors[220]. Furthermore, glycemic control, weight loss, and anti-
hypertensive benefits are additive when combined with Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), leading
to decreased risk of macrovascular and microvascular complications[221,222].

SGLT2i has also been reported to have beneficial effects on OSA, diabetes, blood pressure, arrhythmias, renal damage,
and anemia in patients with HFpEF[223]. SGLT-2i impedes the pathophysiological impact of diabetes on HFpEF
development and reduces mortality[224]. It exerts these effects by attenuating ER stress through upregulation of sirtuin-1,
preventing myocardial injury by inhibiting Na-H exchange in the heart and kidneys, and reducing epicardial fat, thereby
protecting against myocardial fibrosis and microcirculatory damage[224]. In addition to the benefits above, improved
vascular physiology and pressure reduction confer protection against the risk of atrial arrhythmias by preventing atrial
remodeling[225].

In conclusion, SGLT-2 use is tightly linked with decreased cardiovascular mortality, improved quality of life, and
improved exercise capacity in patients with HFpEF[226-228]. The pleiotropic nature of SGLT-2i makes them attractive
options in the potentiation of metabolic disease. It illustrates their inextricable link with a reduction in cardiovascular and
non-cardiovascular mortality in patients with T2DM[229].

Incretin mimetics

DPP-4 inhibitors, GLP-1 RA, and, more recently, dual GLP-1/glucose-dependent insulinotropic polypeptide RA tirzepa-
tide, are pleiotropic drugs robustly linked with enhancing insulin sensitivity, weight loss, and reducing hepatic inflam-
mation and fibrosis[230].

Liraglutide and semaglutide have both been approved for the management of weight loss in obese patients,
irrespective of diabetic status[231]. GLP-1 RA use has demonstrated better glycemic control, weight loss, and a favorable
metabolic profile compared to insulin treatment, highlighting their role as effective anti-diabetic agents[232,233].
Tirzepatide was approved after the most recent EASL-EASO-EASD guidelines were published. It has demonstrated
superiority to GLP-1 RAs in terms of glycemic control and weight loss and holds potential as a viable alternative in the
near future[234]. Induction of insulin sensitivity is accredited to enhanced glucose-mediated insulin secretion at the
pancreas, mitigation of postprandial hyperglycemia through retardation of gastric emptying, and lowered glycosylated
hemoglobin with a net weight loss[235]. Peripherally, GLP-1 agonists cause early satiety through their action at the
brainstem and hypothalamus, induce adipocyte apoptosis, decrease adipokine and cytokine production, and promote
glucose uptake by adipocytes and skeletal muscles, further reducing IR[236].

In conjunction with the aforementioned metabolic benefits, the direct action of incretin mimetics at the liver mitigates
MASLD by indirectly modulating response to energy and nutrients. In trials, GLP-1 RAs have been robustly linked with
reduced visceral and liver fat, irrespective of diabetic status. Another analysis noted a more significant reduction in
steatosis associated with GLP-1 RA compared with other anti-diabetic agents, including SGLT-2i and PPAR agonists[237-
239].

The role of GLP-1 RA in reversing fibrosis is indirect and attributed to its anti-inflammatory and atheroprotective
effects. At a cellular level, these agents inhibit de novo lipogenesis by inhibiting regulators of the carbohydrate element
binding protein (ChREPB) transcription factor, stearoyl-CoA desaturase-1, and activation of AMPK. Interestingly, this
pathway also hampers cardiac hypertrophy in mouse models[240]. Downstream, this results in decreased TG synthesis,
hepatic gluconeogenesis, and VLDL production while promoting insulin signaling and glycogen synthesis in the liver
[241]. Therefore, in MASLD patients, GLP-1 RA reduces cardiovascular events and mortality comparable to SGLT-2i and
superior to other anti-diabetic agents, including metformin[242]. At the cellular level, its cardio-protective effect corre-
lated to antifibrotic activity[243]. This effect is attributed to the inhibition of angiotensin II-mediated NADPH oxidase,
prevention of cardiac autophagy through mTOR inhibition, and vascular dysfunction through modulation of AGE-
induced profibrotic signaling. In line with these functions, GLP-1 RA use is associated with improved diastolic function,
cardiac hypertrophy, and exercise capacity in various models[244-246]. The anti-inflammatory effect of GLP-1, in
conjunction with its atheroprotective action, improves hemodynamics, protects against microvascular dysfunction, and
promotes vasodilation.

Statins

Statins act on the rate-limiting step in cholesterol synthesis by inhibiting HMG-CoA reductase and lowering serum low-
density lipoprotein (LDL)-C levels and triglycerides[247,248]. These agents facilitate LDL clearance through modulation
of protein kinase-A and potentiation of ChREPB and carnitine palmitoyltransferase[1]. Furthermore, these agents counter
steatosis through modulation of PPAR-gamma and PPAR-alpha, alteration of adiponectin signaling, and impeding
peripheral lipolysis[249-254]. Finally, statins retard fibrosis through alteration of the sonic hedgehog pathway. In
summary, statins favor fatty acid oxidation, interfere with de novo lipogenesis, and prevent the progression of MASLD
[255]. Furthermore, statins directly impact lipid profile and endothelial dysfunction and exert antioxidant, anti-inflam-
matory, and immunomodulatory effects[256].

Statins have been shown to prevent myocardial hypertrophy, fibrosis, and LVH as they mitigate microvascular
dysfunction, lower coronary atherosclerosis, and improve the lipid profile[248]. Their pleiotropic action highlights their
importance in improving cardiovascular outcomes. Statins prevent intimal thickening, cell replication, and recruitment of
leukocytes recruitment of immune cells by inhibiting LFA-1 and ICAM, resulting in significant downregulation of
GTPase synthesis[257,258]. Their favorable effect on metabolic profile further contributes to atheroprotection, as NO is
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essential for vasodilation, platelet aggregation, vascular smooth muscle proliferation, and immune cell recruitment[259-
261]. As a result, statins are established as agents that improve cardiovascular outcomes through primary and secondary
prevention.

ACE-l, ARB AND ARNI

In MASLD, the benefit of RAAS inhibition is attributed to the modulation of cardiometabolic risk factors leading to
improved metabolic profile and weight loss[262-264]. Furthermore, ACEi use in MASLD patients is correlated with
reduced progression to cancer and cirrhosis[265]. In experimental models, ACE-I and ARB have inhibited cellular
processes linked with AT-II that favor lipogenesis, adipocyte growth, adipokine release, and proinflammatory cytokine
release and interfere with insulin receptor-PI3K signaling[264,266-271]. In addition, vasodilation improves pancreatic
blood supply, enhances insulin secretion, improves glucose metabolism, and facilitates glucose delivery and uptake by
peripheral insulin-sensitive tissue[272,273].

The anti-fibrotic effect of ACE-I and ARB is attributed to their modulation of AT-II and renin. Renin enhances the
release of TGF-betal, PAI-1, fibronectin, and collagen, while AT-II increases hepatic stellate cell activation, migration, and
concentration. AT-II also converts hepatic stellate cells to myofibroblasts. Simultaneously, it upregulates tissue inhibitors
of metalloproteinase-1 release that secretes and incorporates collagen into the extracellular matrix. In addition, ACE-I and
ARB inhibit ROS generation and decrease cytokine levels that further oppose fibrosis, lipogenesis, and IR[274-278].

MRAs, ARNi, and ARB are class 2b recommendations for treating HFpEF associated with decreased hospitalization,
specifically in patients with EFs on the lower end of the spectrum.

These agents impede RAAS and mitigate arterial hypertension by altering vascular tone, enhancing sympathetic
activity, and activating other downstream hormones[273,279,280].

BETA BLOCKERS

Beta-blockers (BB) use has been traditionally limited in NAFLD due to its negative effect on glucose and lipid metabolism
[281]. Traditionally, non-selective BB use has been associated with improved survival in HCC due to its role in
attenuating vascular remodeling and portal hypertension and ultimately delaying decompensation[282]. On the other
hand, BB use has been associated with lower exercise capacity in HFpEF. However, newer BB, such as nebivolol and
carvedilol, have improved cardiometabolic risk factors, insulin sensitization, and metabolic profile[283,284]. This effect is
attributed to their ability to peripherally mitigate afterload, lower glucose levels, and inhibit obesity-mediated
hypertension[285].

EFFECT OF EMERGING TREATMENTS OF MASLD ON HFPEF

Several novel treatments for MASLD are being developed and tested in Phase 2 or 3 clinical trials. These drugs may affect
HFpEF by modifying shared risk factors that contribute to the development of both conditions. Lanifibranor, a pan-PPAR
agonist, is undergoing Phase-3 trials[286]. Saroglitazar acts as an agonist on PPAR/a/y receptors, and its efficacy in
improving fibrosis is being evaluated in a 4-arm randomized trial[287]. Resmetirom is a thyroid hormone receptor
agonist that helps regulate lipid metabolism in the liver. It effectively reduced liver fat content in a Phase-2 trial and was
recently approved in March 2024 for the management of NASH with F2 and F3 fibrosis[288]. VK-2809 is an alternative
THR B agonist associated with lower hepatic fat deposition being studied in Phase-2 trials[289]. Semaglutide is
undergoing Phase-3 trials to evaluate its ability to resolve MASLD and improve fibrosis. Aldafermin and Pegbelfermin
are FGF 21 analogs that are being tested in Phase-2 trials, as FGF also play critical roles in metabolizing glucose, lipids,
and bile acids. Pegbelfermin efficiently reduced hepatic fat and is now being tested in patients with Stage-3 fibrosis[290].
Galectins are proteins involved in inflammation and fibrosis. The Galectin-3 inhibitor Belapectin is being tested in adults
with MASLD-associated cirrhosis and portal hypertension. It has reduced the hepatic venous pressure gradient in
patients without varices and is thus being tested in Phase-3 trials[291].

Stem cell therapy is based on recent evidence that indicates a complex interplay between various cardiometabolic risk
factors and their impact on genetics. Mesenchymal stem cells are unique in their ability to differentiate into distinct cell
types and may serve to repair damaged tissue. These cells enhance tissue regeneration through various growth factors
and amplify the ability of the body to generate stem cells[292]. Furthermore, as a testament to their pluripotency, MSCs
alter their phenotype based on the inflammatory cytokine encountered and alter macrophages to aid in tissue repair[292-
295]. MSC therapy improved LV ejection fraction in patients after myocardial infarction and has been shown to mount a
favorable immune response in ischemic cardiomyopathy, emphasizing its potential as a breakthrough therapy in the
future[296-298]. Nevertheless, clinical trial data have been varied, and these drugs have not yet been tested in HFpEF or
MASLD populations. Figures 5 and 6 highlight the critical chains of interactions between HFpEF and MASLD, which
serve as pharmacological targets, and the currently available drugs, which reduce the burden of MASLD and HFpEF.
Table 1 highlights the most recent mechanistic evidence linking disease progression in MASLD and HFpEF.
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Table 1 Mechanistic evidence linking disease progression in metabolic dysfunction-associated liver disease and heart failure with

preserved ejection fraction

Ref. Mechanistic link Model

Nasiri-Ansari et al Empagliflozin attenuates MASLD progression in ApoE”" mice by promoting hepatic autophagy, ApoE”" mice

[212], 2021 reducing ER stress, and inhibiting hepatocyte apoptosis

Li et al[214], 2021 Dapagliflozin alleviates hepatic steatosis and protects against liver inflammation and fibrosis by reducing Mouse (DIO/MASLD
lipid accumulation, oxidative stress, and inflammatory responses model)

Wang et al[54], 2021 ~ FGF1AHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing  Diabetic mice
oxidative stress via AMPK/Nur77 suppression

Schiattarella et al[67], iNOS-driven nitrosative stress leads to coronary microvascular inflammation and rarefaction, driving ZSF1 rat model

2019 concentric remodeling and diastolic dysfunction in HFpEF

Hopf et al[182], 2018  Insulin resistance impairs titin phosphorylation via reduced PKG/PKA signaling, increasing Human
cardiomyocyte stiffness and promoting HFpEF in diabetes cardiomyocytes

Slater et al[183], 2019  Metformin improves diastolic function in an HFpEFlike mouse model by lowering titinbased passive HFpEF mouse model

stiffness and enhancing titin compliance via PKG-N2BA isoform shift

Zhao et al[110], 2019  Digoxin inhibits PKM2 and thereby suppresses HIF-1a and NLRP3 inflammasome activation, attenuating Mouse (MASH model)
steatohepatitis and associated inflammation

MASLD: Metabolic dysfunction-associated steatotic liver disease; HFpEf: Heart failure with preserved ejection fraction; iNOS: Inhaled nitric oxide; MASH:
Metabolic-associated steatohepatitis.
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Figure 5 The key chains of interactions between metabolic dysfunction-associated liver disease and heart failure with preserved ejection
fraction, which serve as pharmacological targets. HFpEF: Heart failure with preserved ejection fraction; ACE: Angiotensin converting enzyme; AGEs:
Advance glycation end products: AMPK: AMP-activated protein kinase; ATII: Angiotensin II; ChREPB: Carbohydrate element binding protein; eNOS: Endothelial nitric
oxide synthase; ER: Endoplasmic reticulum; FXR: Farnesoid receptor X; H2S: Hydrogen sulfide; LDL: Low density lipoprotein; LXR: Liver X receptor; MAFLD:
Metabolic-dysfunction associated fatty liver disease; mTOR: Mammalian target of rapamycin; NADPH oxidase: Nicotinamide adeninenucleotide phosphate oxidase;
NF-Kb: Nuclear factor kappa-light-chain-enhancer activated B cells; PDGF: Platelet derived growth factor; PPAR: Peroxisome proliferator-activated receptor; SCD-1:
Stearoyl-CoA desaturase-1; RhoA: Ras homolog family member A; ROCK: Rho associated coiled-coil containing protein kinase; SGLT-2 inhibitors: Sodium-glucose
cotransporter-2 inhibitor; SHH: Sonic hedgehog pathway; TG: Triglyceride; TGFp: Transforming growth factor B; TIMP: Tissue inhibitor of metalloproteinases; VLDL:
Very low density lipoprotein.
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Figure 6 Current pharmacological options, proposed action and their impact on reducing the burden of metabolic dysfunction-
associated liver disease and heart failure with preserved ejection fraction. ACE: Angiotensin converting enzyme; AGEs: Advance glycation end
products; AMPK: AMP-activated protein kinase; ATII: Angiotensin Il; ChREPB: Carbohydrate element binding protein; CPT1: Carnitine palmitoyltransferase 1; CV:
Cardiovascular; eNOS: Endothelial nitric oxide synthase; ER: Endoplasmic reticulum; FA: Fatty acid; FXR: Farnesoid receptor X; H2S: Hydrogen sulfide; HCC:
Hepatocellular carcinoma; HSC: Hepatic stellate cells; KLF2: Kruppel like factors; LDL: Low density lipoprotein; LSEC: Liver sinusoidal endothelial cell; LXR: Liver X
receptor; MASH: Metabolic-dysfunction associated steatohepatitis; NADPH oxidase: Nicotinamide adenine dinucleotide phosphate oxidase; NF-Kb: Nuclear factor
kappa-light-chain-enhancer activated B cells; OSA: Obstructive sleep apnea; PDGF: Platelet derived growth factor; PPAR: Peroxisome proliferator-activated receptor;
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RAAS: Renin-aldosterone-angiotensin system; SCD-1: Stearoyl-CoA desaturase-1; RhoA: Ras homolog family member A; ROCK: Rho associated coiled-coil
containing protein kinase; SGLT-2 inhibitors: Sodium-glucose cotransporter-2 inhibitor; SHH: Sonic hedgehog pathway; T2DM: Type 2 diabetes mellitus; TG:
Triglyceride; TGFp: Transforming growth factor B; TIMP: Tissue inhibitor of metalloproteinases; VLDL: Very low density lipoprotein.

CONCLUSION

MASLD has emerged as the leading cause of chronic liver disease and cirrhosis worldwide in the last 3 decades. The
exponential increase in global MASLD prevalence is closely related to the sharp rise in metabolic disease prevalence,
including diabetes, hypertension, obesity, and dyslipidemia, in both developed and developing countries. In addition, the
same period has seen increases in the incidence of heart failure with preserved ejection fraction. Shared risk factors on the
background of metabolic dysfunction have made a common ground for further exploring the link between MASLD and
CVD, particularly HfpEF. The consistent pool of evidence supports the higher risk of CVD in MASLD, as well as a
bidirectional relationship between MASLD and HfpEF. Furthermore, the extent of fibrosis in MASLD has been shown to
correlate with HFpEF prognosis and progression.
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