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Migration, while often motivated by safety, education, or economic opportunity,

often heightens the risk of obesity and metabolic syndrome. Resettlement in

industrialized nations is associated with sedentary lifestyles, irregular sleep

schedules, and Westernized dietary patterns rich in ultra-processed, high-fat,

and high-sugar foods. These changes disrupt metabolic homeostasis through

endocrine and circadian dysregulation, promoting insulin resistance, visceral

adiposity, and systemic inflammation. Migration alters the composition and

diversity of the gut microbiome, suggesting that the characteristics of the

microbiome could be important in linking migration to changes in health

outcomes after resettlement. However, the precise mechanisms underlying

these microbiome-mediated effects remain poorly understood. We propose

that a dynamic metabolic interface is reshaped via a rapid “microbiome

acculturation”, which is a process by which the gut microbiome rapidly adapts

to a new cultural and environmental milieu, such as caused by migration, shifting

from traditional, fiber-rich microbial profiles to Westernized, Bacteroides-

dominant communities associated with metabolic dysfunction. This is

characterized by the depletion of fiber-fermenting Prevotella and enrichment

of Bacteroides species, leading to reduced short-chain fatty acid production,

impaired gut barrier function, and increased endotoxemia. Dietary transitions,

chronic psychosocial stress, circadian disruption to night-shift work, and

reduced physical activity experienced by immigrants reshapes gut microbial

composition and function to a pro-inflammatory milieu and enhancing insulin

resistance. Thus, gut dysbiosis serves as both a biomarker and mechanistic driver

of post-migration metabolic deterioration, integrating dietary, behavioral, and

environmental stressors into a unified pathogenic pathway. Effective prevention

should target the gut–brain–metabolic axis using multidimensional strategies:

restoring microbial diversity using high-fiber, prebiotic, and probiotic nutrition;

promoting physical activity and circadian alignment; and addressing social

determinants of health such as work patterns, food access, and

acculturation stress.
KEYWORDS
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1 Introduction

Migration is a hallmark of times of uncertainty and conflict. Many

people migrate in search of greater safety, improved education, family

reunification, political stability, and economic opportunities (1–3). The

UN DESA and the OECD emphasize labor migration as the dominant

flow toward high-income nations (4, 5). While relocation can bring

safety and prosperity, it also introduces unintended health

consequences, chief among them being obesity and related metabolic

disorders (6). Exposures to calorie-dense foods and sedentary lifestyles

in industrialized settings contrast sharply with the more active and

balanced nutritional choices of the environments they emigrated from

(7). Epidemiological studies consistently indicate that higher bodymass

index (BMI) and prevalence of type 2 diabetes and cardiovascular

disease correlate with the duration of relocation to more industrialized

nations, reflecting an environment-driven acceleration of metabolic

dysregulation (8–10). Although migration is a powerful driver of

metabolic disorders through lifestyle and environmental adaptations,

the role of the gut microbiome in shaping these outcomes remains

largely underexplored. An extensive body of research demonstrates

that the human gut hosts trillions of microorganisms that play integral

roles in maintaining physiological and metabolic homeostasis. This

complex ecosystem, comprising bacteria, fungi, viruses, and archaea,

exists in a symbiotic relationship with the human host, influencing

numerous aspects of health and disease. Disruptions in the

composition or function of this microbial community, known as

dysbiosis, have been linked to an increased susceptibility to several

chronic conditions, including diabetes, obesity, kidney disease, and

inflammatory bowel disease (11–13).

Extensive analyses of existing studies indicate that migration

induces significant shifts in the composition of the gut microbiome.

These alterations reflect adaptations to new environmental, dietary,

and lifestyle conditions following relocation (14–17) (Table 1). We

proposed that acculturation associated with dietary shifts, altered

physical activity patterns, and psychosocial stress linked to

migration, profoundly influences gut microbial composition and

metabolic signaling, resulting in susceptibility of migrants to

obesity, insulin resistance, and type 2 diabetes. Understanding the

microbiome’s role as a biological interface between migration-
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induced lifestyle transitions and metabolic disease could provide

novel insights into preventive and therapeutic strategies targeting

this vulnerable population (18–20).

Economic survival on resettlement often entails engaging in

multiple jobs and night-shift work, which disrupt circadian

rhythms, degrade sleep, and limit time for physical activity (21,

22), which coupled with increased caloric exposure, creates a potent

triad for obesity and cardiometabolic disease (23, 24). Obesity rates

increase with duration of residence (25, 26). Seminal studies show

obesity increases markedly within 10–15 years of arrival,

approaching or exceeding native-born levels (4), with parallel

patterns in Canada and Europe (25). Beyond behavior, migration

reshapes diet, stress, and socioeconomic context, where traditional

plant-rich diets are replaced by Westernized, energy-dense foods

(27, 28), while acculturative stress, discrimination, and economic

hardship further accelerate weight gain (29, 30). This erosion of the

“healthy immigrant effect” exemplifies the acculturation paradox.
2 mTOR as a regulator of gut
microbiome homeostasis

The mammalian target of rapamycin (mTOR) is a central

nutrient- and energy-sensing kinase that integrates signals from

glucose, amino acids, insulin, growth factors, and inflammatory

cues to regulate cellular growth, metabolism, and survival (31, 32).

Within the gastrointestinal tract, mTOR signaling has a pivotal role in

intestinal epithelial turnover, barrier integrity, autophagy, and innate

immune defense, thereby helping to define the ecological

environment of the gut microbiome (33). When nutrient

availability is balanced, tightly regulated mTOR activity supports

mucosal homeostasis and symbiotic host–microbe interactions.

However, chronic overactivation of mTOR, such as that induced by

excess caloric intake, hyperinsulinemia, and Westernized dietary

patterns, suppresses autophagy and compromises epithelial

antimicrobial function (31, 34) (Figure 1). This dysregulated

mTOR state creates conditions that favor microbial dysbiosis, low-

grade inflammation, and increased metabolic efficiency, thereby

linking host nutrient signaling to gut microbiome remodeling and
TABLE 1 Studies of migration and gut microbiome composition.

Citation
Population &
migration

Host
country

Design
N
(approx.)

Main microbiome change after
migration

Time scale

Vangay
et al. (15),

Hmong & Karen adults
migrating from SE Asia to
the U.S.; first-gen & second-
gen comparison

United States

Cross-sectional +
longitudinal (stool
metagenomics,
diet)

n≈514
Loss of alpha-diversity; shift from Prevotella-rich
to Bacteroides-dominant; loss of fiber-degrading
functions

Within
months;
progression
with longer
residence

Kaplan
et al. (16),

Hispanic/Latino adults; US-
born vs foreign-born;
relocation across regions

United States
Population cohort
analysis

n≈1674
Microbiome composition associated with
geographic relocation, birthplace, and obesity;
US-born vs foreign-born differences

Cross-sectional
across nativity
and relocation

Verhaar
et al.,
(17)

Ghanaian adults: rural
Ghana, urban Ghana, and
Ghanaian migrants in
Amsterdam

Netherlands
(comparison
with Ghana)

Multi-site cohort
(16S rRNA);
gradient along
migration axis

n≈1,177

Clear shift in community composition and
diversity from rural→urban→Amsterdam; taxa
differences partly explained by diet; links to
cardiometabolic markers

Cross-sectional
along
migration
gradient
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downstream weight gain (35, 36). Dietary acculturation and lifestyle

changes in immigrants promote chronic activation of mTOR

signaling coupled with rapid remodeling of the gut microbiome.

These interacting host–microbial pathways reduce metabolic

flexibility, suppress adaptive energy expenditure, and favor energy

storage, and increased risk of weight gain.

This review examines five interconnected domains that collectively

determine metabolic risk following migration: (1) reduced physical

activity (2) dietary transitions, (3) circadian disruption from night-shift

employment (4), psychosocial stress and cultural adaptation, and (5)

gut microbiome alterations, through the activation of mTOR as central

integrator that may link these factors. Each domain interacts through

behavioral, hormonal, and microbial pathways through mTOR

hyperactivation which translates environmental and lifestyle changes

into metabolic outcomes. These mechanisms can collectively explain

the progressive increases in rates of obesity and metabolic disorders

after migration and highlight key entry points for culturally responsive

prevention and intervention strategies.
2.1 Decreases in physical activity

Movement is embedded in daily activities such as agricultural

labor, market trading, carrying water, and walking between towns,
Frontiers in Clinical Diabetes and Healthcare 03
which most migrants engaged in for many years before they relocate

(37). Migration exposes newly arrived settlers to increased

mechanization, urbanization, and motorized transport in place of

manual effort. Desk-based work, long commutes, and digital tools

sharply reduce baseline activity further, and multiple jobs and

caregiving limits time or energy for structured exercise (38).

Inactivity lowers mitochondrial efficiency, impairs glucose uptake,

and increases insulin resistance, key factors that can lead to type 2

diabetes and cardiovascular disease (39) (Table 2). Suppressed

skeletal-muscle oxidative capacity and reduced myokine signaling

limit anti-inflammatory and vasoprotective mechanisms. Thus, the

drop in habitual movement after migration represents a

foundational shift in energy metabolism that propels obesity and

its comorbidities.

Regular physical activity improves the gut microbiome by

increasing microbial diversity and enhancing the abundance of

beneficial bacteria such as Akkermansia muciniphi la ,

Faecalibacterium prausnitzii, and other short-chain fatty acid

(SCFA)–producing species, including acetate, propionate, and

butyrate, which are generated by anaerobic fermentation of

indigestible dietary fibers and resistant starches by commensal gut

microbes in the colon. These metabolites serve as key signaling

molecules and energy substrates that confer multiple metabolic

advantages: butyrate fuels colonocytes and strengthens intestinal
FIGURE 1

Migration-induced weight gain mediated by gut microbiome–mTOR crosstalk. Migration is associated with lifestyle and environmental changes,
including adoption of Westernized diets, reduced dietary fiber intake, increased sedentary behavior, circadian disruption, and exposure to antibiotics.
These factors drive rapid remodeling of the gut microbiome, characterized by reduced microbial diversity, depletion of Prevotella and other short-
chain fatty acid (SCFA)–producing taxa, dominance of Bacteroides species, altered SCFA profiles (butyrate, propionate, acetate), increased gut
permeability, and metabolic endotoxemia (lipopolysaccharide, LPS). Microbiome-derived metabolites and inflammatory signals converge on
nutrient-sensing pathways, particularly mammalian target of rapamycin (mTOR), promoting insulin resistance, visceral adiposity, adipose tissue
inflammation, reduced energy expenditure, metabolic inflexibility, and progressive weight gain. This schematic highlights mTOR as a central
integrative node linking migration-associated environmental exposures to microbiome-driven metabolic dysfunction.
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barrier integrity; propionate participates in hepatic gluconeogenesis

and appetite regulation, and also stimulates the release of PYY and

GLP-1 from human colonic cells preventing weight gain in

overweight adult humans (85). Acetate contributes to lipid

metabolism and peripheral energy balance, while elevation of

butyrate levels following exercise also limits lipopolysaccharide

(LPS) translocation, and mitigates inflammatory signaling (86).

Concurrently, activation of the AMPK–Nrf2 antioxidant axis by

exercise and microbial metabolites attenuates oxidative stress across
Frontiers in Clinical Diabetes and Healthcare 04
intestinal, hepatic, and skeletal muscle tissues (40, 87) (Figure 2). It

also increases mTOR inhibition to prevent gut microbiome

dysregulation. Collectively, these adaptations restore redox

homeostasis, dampen systemic inflammation, and promote

metabolic resilience characterized by improved insulin sensitivity

and lipid metabolism. Collectively, SCFAs modulate host

metabolism by activating G-protein–coupled receptors (GPR41

and GPR43), promote anti-inflammatory cytokine production,

improves insulin sensitivity, and enhances mitochondrial
FIGURE 2

Exercise–mTOR–gut microbiome axis in metabolic regulation. Regular physical activity directly activates AMP-activated protein kinase (AMPK),
promoting mitochondrial biogenesis and autophagy while suppressing anabolic signaling. AMPK activation leads to inhibition of mammalian target of
rapamycin (mTOR), resulting in favorable modulation of the gut microbiome, including increased short-chain fatty acid (SCFA) production. These
molecular adaptations enhance gut microbiome health by increasing beneficial taxa (e.g., Faecalibacterium prausnitzii and Akkermansia muciniphila),
improving microbial diversity and gut barrier integrity, and reducing intestinal permeability. Collectively, these effects contribute to reduced
metabolic inflammation and improved metabolic homeostasis.
TABLE 2 Sociocultural and environmental domains influencing obesity risk among migrants and potential interventions.

Domain Mechanisms contributing to obesity References Potential intervention

Decreases in Physical
Activity

Diminished mitochondrial efficiency, impaired glucose uptake,
increased insulin resistance → T2D/CVD risk

(31–34)
Community-based activity programs; culturally
adapted exercise; workplace movement policies

Dietary Transitions
and Nutrition
Acculturation

Westernized diets with ↑ refined carbs/fats/sugars, ↓ fiber; oxidative
stress; microbiome shift with ↓ Prevotella and ↓ SCFAs

(40–46)
Culturally tailored nutrition education; greater access
to fresh produce; support for healthy traditional
dietary practices

Work Patterns &
Circadian Disruption

Irregular/night work desynchronizes body clocks; worsens glucose
tolerance, lipid handling; leptin↓ ghrelin/cortisol↑; visceral adiposity,
insulin resistance

(47–67)
Limit prolonged shift work; optimize light exposure;
improve sleep hygiene; align meals with circadian
timing

Psychosocial Stress &
Cultural Adaptation

Chronic stress activates HPA axis; ↑ cortisol/IL-6/TNF-a; visceral
fat; emotional eating

(64, 68–74)
Stress-management; social support; culturally
sensitive counseling; workplace equity

Impact on Gut
Microbiome

Post-migration ↓ diversity; Prevotella→Bacteroides shift; ↑ energy
harvest, ↓ SCFA signaling, ↑ permeability and inflammation

(75–84)
Fiber-rich diets, fermented foods, prebiotics/
probiotics; preserve traditional foodways
This table summarizes five key domains through which migration-related lifestyle changes contribute to obesity and metabolic dysfunction: reduced physical activity, Western diets, circadian
disruption, psychosocial stress, and gut microbiome alterations, that collectively impair mitochondrial efficiency, promote inflammation, and increase insulin resistance. The final column
highlights potential interventions, including culturally appropriate exercise programs, nutrition education, circadian-aligned work schedules, psychosocial support, and dietary strategies
emphasizing fiber-rich and fermented foods to preserve gut microbial diversity and metabolic health.
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function. Thus, exercise-induced enrichment of SCFA-producing

bacteria supports metabolic homeostasis and protects against

obesity-related insulin resistance and systemic inflammation

(41–44).

Thus, exercise-modulated changes in the microbiome contributes

to improved glucose regulation, lipid metabolism, immune function,

and even brain health via the gut-brain axis. Moderate aerobic exercise

produces the most consistent benefits, while extreme endurance

training may temporarily disrupt gut integrity (45). Recent evidence

suggests that the combined effects of exercise, dietary modulation, and

gut microbial adaptations act synergistically to enhance metabolic

health and performance outcomes beyond the benefits achieved by

any single intervention alone (46).
2.2 Dietary transitions

Dietary changes are among the most rapid and consequential

shifts after resettlement. Traditional agrarian and community-based

diets emphasize vegetables, legumes, fruits, and whole grains

prepared from minimally processed ingredients (47). Synchronized

with seasonality and communal eating, these patterns correlate with

lower obesity, diabetes, and cardiovascular risk (48, 49). Post-

migration, access, cost, time limitations, and cultural adaptation

favor Westernized patterns that are high in refined carbohydrates,

processed meats, sugary beverages, and saturated fats (50). The

increased intake of calorie-dense, high-fat, and refined-

carbohydrate foods, promotes chronic activation of nutrient-

sensing pathways, particularly mTOR signaling. Sustained mTOR

activation links these dietary changes to impaired metabolic

flexibility, altered gut microbiome composition, and increased risk

of obesity and metabolic disease (51). Food environments in low-

income urban areas (commonly inhabited by migrants) are

dominated by fast food and convenience outlets and fewer outdoor

spaces for recreational activities such as walking etc., further limit

healthy choices (52). Long hours and tight budgets reinforce reliance

on inexpensive, calorie-dense items, while the perceived modernity of

previously scarce foods erodes traditional practices.

A diet rich in diverse, minimally processed plant foods, such as

whole grains, legumes, fruits, vegetables, nuts, and seeds, increases

gut microbiome diversity and overall metabolic health. This dietary

pattern, often commonly practiced by migrants before relocation to

Westernized societies, provides fermentable fibers that serve as

substrates for beneficial gut bacteria, promoting the production of

SCFAs to strengthen the gut barrier, enhance insulin sensitivity, and

reduce systemic inflammation. However, upon migration, a shift

toward Western diets that are high in refined carbohydrates, animal

fats, and processed foods often diminishes microbial diversity and

increases the risk of obesity and metabolic disease (53, 54).

In summary, migration often precipitates a profound nutritional

transition that reshapes both metabolic health and gut microbial

ecology. While traditional, plant-based diets that are rich in fiber and

minimal consumption of processed foods promote microbial

diversity and metabolic resilience, while post-migration adoption of

Westernized dietary habits, driven by accessibility, convenience,
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affordability, and acculturation pressures, erodes these benefits. The

resulting decline in beneficial SCFA, producing bacteria, coupled with

increased consumption of refined and high-fat foods, contributes to

heightened risks of obesity, insulin resistance, and cardiovascular

disease. Addressing these challenges requires culturally sensitive

nutritional strategies that preserve traditional dietary strengths

while promoting sustainable, microbiome-friendly eating patterns

in resettled populations.
2.3 Immigrants and night-shift work

Migrants often lack “local experience” and face systemic barriers to

accreditation of professional qualifications, leading to many migrants

being disproportionately represented in occupations that require night-

shift or rotating-shift work, such as healthcare, transportation,

manufacturing, and service industries. The economic pressures many

migrants face due to limited employment options available to them,

and the demand for around-the-clock labor, reduces access to better

lifestyles and work opportunities. This increased exposure to nocturnal

work profoundly disrupts their circadian rhythms, particularly the

synchronization between central (light-entrained) and peripheral

(feeding-entrained) clocks. Night-shift workers often consume meals

(often unhealthy foods) during the biological night, when metabolic

processes such as glucose tolerance, lipid oxidation, and insulin

sensitivity are at their lowest (55, 56). This circadian misalignment of

eating habits leads to impaired nutrient metabolism, altered gut

microbiome rhythmicity, and increased risk of weight gain, insulin

resistance, and cardiometabolic disorders. Moreover, irregular meal

timing and frequent snacking to maintain alertness at night further

exacerbates desynchronization between the body’s internal clocks and

external cues. Consequently, migrants engaged in night-shift work face

compounded metabolic risks arising from both social determinants

and physiological disruption of circadian eating patterns (57–60).

The gut microbiome exhibits remarkable diurnal oscillations

that are tightly linked to the host’s feeding and fasting cycles,

influencing energy balance and metabolic health. These rhythmic

fluctuations in microbial composition and function help coordinate

nutrient absorption, SCFA production, and bile acid metabolism,

thereby shaping systemic metabolic responses. However, the precise

mechanisms underlying this bidirectional relationship remain

incompletely understood. Eating during night shift work disrupts

normal feeding–fasting rhythms and dampens the cyclical

oscillations of gut microbial taxa, leading to metabolic inflexibility

and weight gain. Conversely, time-restricted feeding (TRF), which

consolidates food intake to the nocturnal phase, partially restores

microbial rhythmicity and protects against obesity and metabolic

disorders. TRF also enriches bacterial species that enhance host

metabolic efficiency and reduce inflammation. Collectively, these

findings suggest that the temporal pattern of food intake, along with

dietary composition, profoundly affects the gut microbiome’s

diurnal dynamics and its contribution to host metabolism.

Consequently, both feeding timing and sample collection time are

critical variables in studies assessing the microbiome’s role in

metabolic regulation (61–64).
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2.3.1 Circadian rhythms and metabolic health
The circadian rhythm exerts a profound influence on the daily

oscillations in gene expression, protein synthesis, metabolism, and

cellular signaling. At its core lies a transcription–translation feedback

loop involving the clock genes CLOCK, BMAL1, PER, and CRY,

which regulate each other in roughly 24-hour cycles (65). This

molecular clock drives rhythmic changes in chromatin structure,

transcription factor activity, and noncoding RNA expression,

resulting in time-dependent regulation of nearly half of the

genome. Through interactions with epigenetic modifiers such as

SIRT1 and histone acetyltransferases, circadian rhythms align

cellular processes such as DNA repair, cell cycle progression, and

energy metabolism with the environmental light–dark cycle (66, 67).

Night-shift work profoundly disrupts the circadian system and

has been associated with increased risk of metabolic, gastrointestinal,

cardiovascular, and neurocognitive disorders. Alterations in gut

microbiota composition and function may serve as a key

intermediary linking circadian disruption to these adverse health

outcomes (68). Disruption of the circadian rhythm and alterations in

the gut microbiome are interconnected through a bidirectional

communication network encompassing the nervous, immune, and

endocrine systems, collectively known as the gut–brain–circadian

axis. When circadian rhythms are misaligned, such as during night-

shift work or irregular feeding schedules, the gut microbiome loses its

diurnal rhythmicity, resulting in compositional shifts and altered

microbial metabolism. These changes disrupt the production of

SCFAs and bile acid signaling, which in turn promote systemic

inflammation, oxidative stress, and metabolic dysregulation (69,

70). Conversely, the gut microbiota modulates host circadian
Frontiers in Clinical Diabetes and Healthcare 06
rhythms by sending feedback signals through microbial

metabolites, cytokine-mediated immune pathways, and vagal nerve

activation, influencing central and peripheral clock gene expression.

This reciprocal regulation forms a feedback loop, where circadian

misalignment alters microbial activity, and microbial disturbances

that further reinforce circadian disruption, ultimately contributing to

metabolic syndrome, obesity, and glucose intolerance (64, 71).

Disruption of circadian rhythm, such as from night-shift work or

irregular sleep, leads to oxidative stress, insulin resistance,

inflammation, and increased susceptibility to chronic diseases

including obesity, type 2 diabetes, cardiovascular disorders, and

cancer (72–74). Important in this context are recent epidemiological

data supporting a bidirectional relationship between sleep disorders

and obesity (75, 76).

In summary, the circadian rhythm acts as a master regulator

that integrates molecular, metabolic, and epigenetic signals to

maintain cellular and systemic homeostasis. It ensures that energy

utilization, redox balance, and gene expression are synchronized

with daily environmental cues. Disruption of this rhythm disturbs

these tightly regulated processes, predisposing individuals to weight

gain leading to metabolic and cardiovascular diseases, as

summarized in Figure 3.
2.4 Psychosocial stress, acculturation, and
gut microbiome dysregulation

Migration introduces a cascade of psychosocial stressors,

including language barriers, cultural dissonance, underemployment,
FIGURE 3

Gut microbiome and weight gain after immigration. Pathways from migration associated with obesity via changes in the microbiome. Exposure to a
Western diet and altered routines (circadian disruption; reduced activity) drive dietary shifts and microbial remodeling, reduced diversity, loss of
fiber-fermenting Prevotella, and greater Bacteroides abundance. Immigrants adapting to industrialized environments have reductions in short chain
fatty acids (SCFAs), increases in low-grade inflammation, and metabolic dysregulation to promote weight gain, insulin resistance, and downstream
cardiometabolic effects.
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and social isolation, that exert both direct and indirect effects on

metabolic health (77, 78). Chronic activation of the hypothalamic–

pituitary–adrenal (HPA) axis as a result of sustained psychological

stress elevates cortisol levels, which enhance hepatic gluconeogenesis,

promote visceral fat deposition, and induce insulin resistance (79–

81). Dysregulated cortisol rhythms also disrupt appetite-regulating

hormones such as ghrelin and leptin, heightening hunger and

preference for high-fat, high-sugar foods (82). Over time, these

hormonal and behavioral responses create a metabolic environment

conducive to obesity and related disorders, particularly when

combined with reduced physical activity and poor sleep quality (83).

Emerging evidence suggests that chronic psychological stress also

exerts significant influence on gut microbiome composition and

function, forming a critical biological bridge between mental distress

and metabolic disease. Sustained activation of the HPA-axis increases

gut permeability and alters mucosal immunity, allowing stress-induced

glucocorticoids and catecholamines to modify microbial balance. This

promotes the overgrowth of pathogenic bacteria and reduces

populations of beneficial commensals such as Lactobacillus and

Bifidobacterium. Such dysbiosis diminishes SCFA production,

weakens intestinal barrier integrity, and heightens systemic

inflammation, mechanisms known to contribute to insulin resistance

and visceral adiposity. In immigrant populations, where stress often

coexists with dietary acculturation and disrupted circadian rhythms,

these microbial alterations magnify metabolic vulnerability. Thus,

psychosocial stress not only alters eating behavior and hormonal

balance but also reshapes the gut ecosystem, reinforcing a vicious

cycle of inflammation, oxidative stress, and weight gain.

Addressing these effects requires an integrated strategy

combining culturally sensitive mental-health support, social

inclusion programs, and microbiome-supportive nutritional

interventions (e.g., prebiotic- and probiotic-rich diets) (84).

Together, these approaches can mitigate stress-related gut

dysbiosis, improve metabolic resilience, and reduce obesity risk

among immigrant communities facing chronic psychosocial strain.
2.5 The gut microbiome: a central
modulator of weight gain following
immigration

The U.S. hosts nearly one-fifth of the world’s immigrants, where

post-migration obesity risk is elevated, with refugees experiencing

sharp increases in BMI (88, 89). Western diet acculturation, food

insecurity, and reduced activity contribute, but do not fully explain

the excess risk for weight gain (90). Because the microbiome rapidly

mirrors new diets and environments (91, 92), it offers a lens on

metabolic change. Work following Hmong and Karen migrants

(refugees from South East Asia-{{-}}–Hmong mostly from Vietnam

and Karen mostly from Burma) showed that even brief residence in

the U.S. increases the Bacteroides: Prevotella ratio and erodes

carbohydrate-active enzyme capacity (15, 93). These patterns reflect

“microbiome Westernization” and align with the disappearing

microbiota hypothesis (94). Second-generation immigrants often

exhibit Western-like microbiomes despite distinct diets, suggesting
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intergenerational depletion. Collectively, these findings link

immigration to durable microbial perturbations that elevate

metabolic risk. The gut microbiome acts as a dynamic interface

between environmental cues and host metabolism, integrating the

effects of diet, physical activity, stress, and circadian rhythm.

Together, these factors shape microbial composition, metabolic

outputs, and the risk of obesity and metabolic disease.

The combined effects of diet, physical activity, psychological

stress, and circadian disruption (e.g., night-shift work) on weight

gain, particularly among migrant populations, suggests that the gut

microbiome may serve as a central mediator linking these factors to

metabolic outcomes (95)(Figure 4). In immigrants adopting a

Western lifestyle, this becomes especially relevant: migration often

coincides with dietary acculturation (higher ultra-processed food

intake, lower fiber), changes in exercise patterns and activity,

elevated psychosocial stress of adaptation, and disrupted sleep/meal

timing, all of which converge on the intestinal microbial ecosystem.

When individuals move from non-Western to Westernised

environments, their gut microbiota tend to “Westernize” (i.e., lose

diversity, shift from Prevotella-rich to Bacteroides-rich profiles) in

association with increased adiposity. A seminal study of Southeast

Asian immigrants to the U.S. reported that increased duration in

the U.S. was associated with reduced gut microbial diversity,

concomitant with greater obesity prevalence (15). Mechanistically,

these shifts may impair microbial fiber-fermentation capacity, favor

energy harvesting, and promote low-grade inflammation—setting

the stage for weight gain. Indeed, in a large cohort of U.S. Hispanics/

Latinos, longer U.S. residence was associated with reduced gut

microbiome diversity and functions of fiber degradation, and

these alterations correlated with higher BMI (96).

Furthermore, lifestyle modifiers common to immigrants amplify

this microbiome–weight gain axis. Lower physical activity and high

adiposity are linked to less beneficial microbial profiles, and exercise

favorably modulates gut microbiota composition (97). Chronic

psychosocial stress (from migration, acculturation pressure,

socioeconomic strain) and circadian disruption (e.g., night-shift

work) likewise perturb the gut microbiome. For example, shift

work is associated with gut dysbiosis, systemic inflammation, and

metabolic dysregulation (95). Thus, the intertwining of altered diet/

exercise, psychological stress, and sleep/meal timing disruption in

immigrants converges on the microbial ecosystem, helping to explain

why immigrant populations often exhibit weight gain and metabolic

risk post-migration.
3 Limitations

This literature review has several limitations that should be

acknowledged: (1) Immigrant populations are highly heterogeneous

with respect to ethnicity, cultural practices, socioeconomic status,

country of origin, and host environment. These factors can

individually or collectively influence dietary patterns, gut

microbiome composition, mTOR signaling, and metabolic

outcomes (98). As a result, the pathways proposed here may not be

uniformly applicable across all migrant groups; (2) Generational
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effects are not fully captured in the existing literature; first-generation

immigrants often exhibit distinct changes in microbiome and

metabolic profiles compared with second- and later generation

populations, reflecting progressive acculturation, early-life

exposures, and epigenetic adaptation over time (99); (3) The

substantial interindividual variability in host genetics may modify

susceptibility to microbiome remodeling and mTOR activation, can

influence insulin sensitivity, adiposity, and inflammatory responses

(100); (4) Genetic differences in nutrient sensing, immune regulation,

and circadian biology are rarely considered in migration-related

metabolic studies; (5) Accurate measurements of key lifestyle

exposures remains challenging. Most studies rely on self-reported

data on dietary intake, physical activity, and sleep patterns, which are

prone to recall bias and misclassification (101, 102). These limitations

underscore the need for longitudinal, multi-omics studies integrating

host genetics, objective behavioral measures, and microbiome

profiling across diverse migrant populations and generations.
4 Public health impact

Obesity levels in immigrant populations is increasing and nears

native-born levels within one to two decades of arrival (103, 104).

As this prevalence grows, so does the burden of diabetes, hypertension,
Frontiers in Clinical Diabetes and Healthcare 08
and atherosclerotic disease in immigrant communities (105), likely due

to the cumulative effects of biological and structural stressors in

obesogenic environments. The economic toll is substantial,

encompassing direct medical costs and indirect productivity losses,

which disproportionately affect immigrants in labor-intensive and

service roles (106).

Reducing this burden requires culturally informed, upstream

strategies. Interventions should address night-shift exposure,

acculturative stress, food insecurity, and preventive-care access

(107–109). City- and community-level programs that make healthy

foods and safe recreation accessible—and that respect traditional

foodways—are essential (110, 111). Language-appropriate care,

mobile health, and expanded coverage can enable earlier screening

and management (112). Tackling biological and structural drivers in

tandem is critical to bending the curve.
5 Conclusion

Migration initiates a complex cascade of biological,

environmental, and behavioral transitions that converge on the gut

microbiome as an important mediator of metabolic health. The

evidence synthesized in this review suggests that changes in diet,

physical activity, circadian rhythm, and psychosocial stress
FIGURE 4

Proposed pathways linking migration-associated lifestyle changes to gut microbiome dysfunction. Migration is frequently accompanied by reduced
physical activity, dietary transition to low-fiber Westernized diets, circadian disruption, and heightened psychological stress. Reduced physical activity
and dietary fiber intake suppress AMPK signaling and short-chain fatty acid (SCFA) production, promoting pathological activation of mTOR signaling.
Circadian misalignment disrupts microbial rhythmicity, while chronic psychosocial stress activates the hypothalamic–pituitary–adrenal (HPA) axis,
increasing cortisol and NF-kB–mediated inflammation. These converging pathways drive gut microbiome dysregulation characterized by reduced
microbial diversity, depletion of beneficial taxa, impaired gut barrier integrity, and increased metabolic inflammation, thereby contributing to obesity
and metabolic disease risk in immigrant populations.
frontiersin.org

https://doi.org/10.3389/fcdhc.2025.1745885
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Fasipe and Laher 10.3389/fcdhc.2025.1745885
collectively remodel the gut microbial ecosystem, transforming a

metabolically resilient community into one that promotes

inflammation, insulin resistance, and adiposity. The process of

“microbiome Westernization” characterized by reduced diversity,

depletion of Prevotella species, and enrichment of Bacteroides,

represents a biological signature of acculturation, mirroring the

transition from traditional plant-based diets and active lifestyles to

sedentary, high-calorie, and low-fiber environments. Night-shift

work and irregular meal timing further desynchronize microbial

oscillations and metabolic pathways, amplifying the risk of obesity

and type 2 diabetes. Thus, the gut microbiome provides an integrative

framework that links social and behavioral determinants of migration

to molecular mechanisms of metabolic disease. Future efforts should

longitudinally track the gut microbiome in recently arrived migrants

and follow this with the duration of resettlement, and stratify this data

by age, gender and type of employment etc.

Addressing this growing public health challenge requires an

interdisciplinary approach that recognizes the microbiome as both a

marker and modifiable target of post-migration health. Interventions

that restore circadian alignment, promote physical activity, and support

access to fiber-rich, culturally familiar diets can reestablish microbial

diversity and metabolic balance. Community-based programs must

also tackle broader social determinants, such as shift-work exposure,

acculturative stress, and food insecurity, that perpetuate metabolic

disparities among immigrants. Ultimately, strategies that integrate

microbiome-informed nutrition, chronobiology, and social policy

hold the greatest promise for preserving metabolic health during the

migration process and preventing the erosion of the “healthy

immigrant effect” across generations.
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